jwright94 commited on
Commit
3a65408
·
1 Parent(s): 8e42a6e

Unit 1 Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.43 +/- 52.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75f26cd8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75f26cd940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75f26cd9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75f26cda60>", "_build": "<function ActorCriticPolicy._build at 0x7f75f26cdaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f75f26cdb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75f26cdc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75f26cdca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75f26cdd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75f26cddc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75f26cde50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75f26cdee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75f26c49f0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673589536091157144, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCvcz683gs96HH+Oof05jk0mZk+hHpFugAAgD8AAIA/TezEvZ3fHD+o8pq9LCG6viMRhr3JBUS8AAAAAAAAAAA9vqg+a/mQPb1EHLvWn9q5p3GPPjY2YDoAAIA/AACAP2a6YbyvllI/vqI1vRBSJb/gVPe8BQ/8vAAAAAAAAAAAU7NDvg8HWbwR4Zi8ssSPPKPQwD3olmm9AACAPwAAgD/60Ua+lGnMvKHukLwZ1iS7OfI4PjbA/zsAAIA/AACAPy0psD5Gbww/6mOVPuqNB7+5Ioc+Ki06vQAAAAAAAAAA4C5gPgH1ybyBup244kuNN21VL75XK8Q3AACAPwAAgD/GIew+B69XP6AMzj575ii/BNmyPkRcvLwAAAAAAAAAAC0IXT7pPxw96+wUuvr9vbj5N7Q+0MgEOAAAgD8AAIA/zWyPOttisT9WF9w8PXF0vllpMLwCZY69AAAAAAAAAACaGUW7sH6yP4W+jr3lIWS+ywnIuh4457wAAAAAAAAAAGZ4aL0Ubv+4rfWLtqJ3gDDXxhq8euurNQAAgD8AAIA/zWylOvddtT/S4wI+c8KIPvPMvrpAMO28AAAAAAAAAACgFUw+hTHwPEzYjLrW9lC5u1KFPo4q1zkAAIA/AACAPzNQLT0Gc74/ArITPrWnjL4Lh7m7om+AvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJnDrbh6YbkCUhpRSlIwBbJRL4owBdJRHQJsn2JKraM91fZQoaAZoCWgPQwg/H2XERcpwQJSGlFKUaBVL0WgWR0CbKSwUQCjldX2UKGgGaAloD0MIFvn1Q+zFY0CUhpRSlGgVTegDaBZHQJsqRkPMB6t1fZQoaAZoCWgPQwhUi4hisv5wQJSGlFKUaBVLymgWR0CbKwu0kWykdX2UKGgGaAloD0MIdk8eFmp4XECUhpRSlGgVTegDaBZHQJsrINsnAqN1fZQoaAZoCWgPQwgGvTeGgJptQJSGlFKUaBVLuGgWR0CbKzxqfvnbdX2UKGgGaAloD0MIB+v/HKaecECUhpRSlGgVS81oFkdAmyuBS9/SY3V9lChoBmgJaA9DCCeIug9AO2NAlIaUUpRoFU3oA2gWR0CbLYLronrqdX2UKGgGaAloD0MIuHaiJGSgckCUhpRSlGgVTQ0BaBZHQJsuerq+rU91fZQoaAZoCWgPQwgKKxVUlORwQJSGlFKUaBVLxGgWR0CbLntu1ndwdX2UKGgGaAloD0MITmGlgsrIcUCUhpRSlGgVTUUBaBZHQJsvDg62fCh1fZQoaAZoCWgPQwghA3l2+UtgQJSGlFKUaBVN6ANoFkdAmzDbDQ7cPHV9lChoBmgJaA9DCFG+oIXET3BAlIaUUpRoFU1qAWgWR0CbMVbFS88LdX2UKGgGaAloD0MI325JDlhScECUhpRSlGgVTQ0BaBZHQJsx5g7YChh1fZQoaAZoCWgPQwjMm8O1mpVxQJSGlFKUaBVL4GgWR0CbMhwzch1UdX2UKGgGaAloD0MIwZDVrV44cECUhpRSlGgVS+NoFkdAmzIjQVsUI3V9lChoBmgJaA9DCPt5U5GKB3JAlIaUUpRoFUvXaBZHQJsyMO5J9Rd1fZQoaAZoCWgPQwjLoUW2c19uQJSGlFKUaBVN7gJoFkdAmzJk5uIhyXV9lChoBmgJaA9DCLeYnxuaMW9AlIaUUpRoFUvEaBZHQJszV5xBE8d1fZQoaAZoCWgPQwhM4UGz69NwQJSGlFKUaBVNLQFoFkdAmzOHNs3yZ3V9lChoBmgJaA9DCLyS5Lm+gHBAlIaUUpRoFUvXaBZHQJs0mRPoFFF1fZQoaAZoCWgPQwgkfVpFfxVyQJSGlFKUaBVL2WgWR0CbNSBU70WedX2UKGgGaAloD0MIbJih8UTucECUhpRSlGgVS6hoFkdAmzXAn6VMVXV9lChoBmgJaA9DCEeRtYbSSm5AlIaUUpRoFUu8aBZHQJs13tjTa0x1fZQoaAZoCWgPQwgWNZiGIVlzQJSGlFKUaBVNIwFoFkdAmzagjQiRn3V9lChoBmgJaA9DCKG/0CPGaHFAlIaUUpRoFUuzaBZHQJs22qvNeMR1fZQoaAZoCWgPQwgLKT+p9qExQJSGlFKUaBVLr2gWR0CbNvaG5+YudX2UKGgGaAloD0MIdNNmnAbIcECUhpRSlGgVS8xoFkdAmzd5xrBTGnV9lChoBmgJaA9DCCrgnudPQXBAlIaUUpRoFUvaaBZHQJs3p0NjLB91fZQoaAZoCWgPQwgiiPNwgjpxQJSGlFKUaBVLumgWR0CbODz9jwx4dX2UKGgGaAloD0MIXTRkPArYc0CUhpRSlGgVTTEBaBZHQJs6TLeQ+2V1fZQoaAZoCWgPQwjFOeroOHxuQJSGlFKUaBVLtWgWR0CbOvrO7g89dX2UKGgGaAloD0MIhqsDIO4oTkCUhpRSlGgVS5poFkdAmztGvjfelHV9lChoBmgJaA9DCIFbd/MUHHBAlIaUUpRoFUv1aBZHQJs7fp3X7Lt1fZQoaAZoCWgPQwih2Aqals5xQJSGlFKUaBVLpWgWR0CbPEKVpsXSdX2UKGgGaAloD0MIoKaWrfVjY0CUhpRSlGgVTegDaBZHQJs9LgNwzch1fZQoaAZoCWgPQwhYN94dGcBuQJSGlFKUaBVNbgJoFkdAmz1QieNDMXV9lChoBmgJaA9DCPpH36RpVnBAlIaUUpRoFUu/aBZHQJs9V8Aq/dt1fZQoaAZoCWgPQwh/MPDcO/twQJSGlFKUaBVL5WgWR0CbPV8kleF+dX2UKGgGaAloD0MIiuWWVoMzdECUhpRSlGgVTQoBaBZHQJs9hB9kSVZ1fZQoaAZoCWgPQwjVBFH3AY9gQJSGlFKUaBVN6ANoFkdAmz4D7ALy+nV9lChoBmgJaA9DCFoSoKYWMnJAlIaUUpRoFU0HAWgWR0CbP9GXokiVdX2UKGgGaAloD0MI+prlstE3X0CUhpRSlGgVTegDaBZHQJtAGJfpljF1fZQoaAZoCWgPQwhO0vwxrW9uQJSGlFKUaBVNjwFoFkdAm0BZTQ3PzHV9lChoBmgJaA9DCBegbTXrcHBAlIaUUpRoFUvZaBZHQJtBLfNzKcN1fZQoaAZoCWgPQwhuhbAaSx5xQJSGlFKUaBVNBgFoFkdAm0GMvqTr3XV9lChoBmgJaA9DCNydtdsucHBAlIaUUpRoFUvoaBZHQJtBuAc1fmd1fZQoaAZoCWgPQwjv/+OESWhxQJSGlFKUaBVLr2gWR0CbQcFj/dZadX2UKGgGaAloD0MIZY16iIZRcECUhpRSlGgVS8RoFkdAm0JJjH4oJHV9lChoBmgJaA9DCH2R0JZzfXBAlIaUUpRoFUvNaBZHQJtCrCMxXXB1fZQoaAZoCWgPQwij5UAP9T1yQJSGlFKUaBVNIQFoFkdAm0Pk+1SflXV9lChoBmgJaA9DCOM3hZWKgXJAlIaUUpRoFU0FAWgWR0CbRLUFSsKcdX2UKGgGaAloD0MIjQkxl9QsakCUhpRSlGgVTTgBaBZHQJtFRb0OEuh1fZQoaAZoCWgPQwjKpIY2wANxQJSGlFKUaBVL1WgWR0CbRUwYcebNdX2UKGgGaAloD0MIKQRyiSOwb0CUhpRSlGgVS9doFkdAm0XoBJZntnV9lChoBmgJaA9DCI6tZwiHa3BAlIaUUpRoFUvkaBZHQJtF/HBDXvp1fZQoaAZoCWgPQwhJ9gg1AxtwQJSGlFKUaBVNnQFoFkdAm0YkoBq9G3V9lChoBmgJaA9DCP5+MVvyCnRAlIaUUpRoFUvKaBZHQJtG5p8F6iV1fZQoaAZoCWgPQwgF+kSe5A1yQJSGlFKUaBVL3WgWR0CbRwK/EfkndX2UKGgGaAloD0MImX6JeKsXc0CUhpRSlGgVS9JoFkdAm0dVWsA/93V9lChoBmgJaA9DCFoqb0c4yTjAlIaUUpRoFUulaBZHQJtJHvXsgMd1fZQoaAZoCWgPQwgsZ++MtuBxQJSGlFKUaBVL8mgWR0CbSSiX6ZYxdX2UKGgGaAloD0MIbtqM01Bkc0CUhpRSlGgVS+9oFkdAm0pcaGYa53V9lChoBmgJaA9DCLHh6ZXyEnNAlIaUUpRoFUvDaBZHQJtKi4z7/GV1fZQoaAZoCWgPQwin6bMD7i9xQJSGlFKUaBVLsmgWR0CbSrW7OE/TdX2UKGgGaAloD0MIgQhx5WzqcUCUhpRSlGgVS7VoFkdAm0sEYXO4X3V9lChoBmgJaA9DCNqoTgfyvXBAlIaUUpRoFUulaBZHQJtLZUKiPAB1fZQoaAZoCWgPQwi6u86GfHBxQJSGlFKUaBVL9mgWR0CbS/XSBshxdX2UKGgGaAloD0MI9MMI4VGJcECUhpRSlGgVS8hoFkdAm0xwZbY9PnV9lChoBmgJaA9DCKBP5EmS8HFAlIaUUpRoFUv7aBZHQJtMwwIt16p1fZQoaAZoCWgPQwg7U+i8xtZhQJSGlFKUaBVN6ANoFkdAm07Ocx0uDnV9lChoBmgJaA9DCIiDhChfqGxAlIaUUpRoFUvOaBZHQJtO89KVY6p1fZQoaAZoCWgPQwgGhNbDlxtBQJSGlFKUaBVLtGgWR0CbT3qVhTfjdX2UKGgGaAloD0MI8fPfg9eEbkCUhpRSlGgVS6xoFkdAm0+hsZYPoXV9lChoBmgJaA9DCMXjolrEu29AlIaUUpRoFUvGaBZHQJtQNoJzDGd1fZQoaAZoCWgPQwgMrU7OkAtxQJSGlFKUaBVNDQFoFkdAm1DdZeRgZ3V9lChoBmgJaA9DCBDrjVphXm9AlIaUUpRoFUu/aBZHQJtQ7QokRjB1fZQoaAZoCWgPQwjc1avI6K9wQJSGlFKUaBVLtGgWR0CbUTYg7o0RdX2UKGgGaAloD0MIK4VALnF+cECUhpRSlGgVS7poFkdAm1JF0tAcDXV9lChoBmgJaA9DCFzmdFlMDXFAlIaUUpRoFUvRaBZHQJtSmwIMSbp1fZQoaAZoCWgPQwjrp/+seTxmQJSGlFKUaBVN6ANoFkdAm1Kyb2Dg63V9lChoBmgJaA9DCM6njlUKNHFAlIaUUpRoFU0QAWgWR0CbUuiPQv6CdX2UKGgGaAloD0MIQ8U4fxMCcUCUhpRSlGgVS9RoFkdAm1Xdnwob43V9lChoBmgJaA9DCOF86lglGnBAlIaUUpRoFUu0aBZHQJtWbw1BMSN1fZQoaAZoCWgPQwj7ljldFptxQJSGlFKUaBVLuGgWR0CbVoFs54nndX2UKGgGaAloD0MIaXIxBtbrbkCUhpRSlGgVS9loFkdAm1bftdAxBXV9lChoBmgJaA9DCA5ORL82GHJAlIaUUpRoFUv5aBZHQJtXQqiGnGd1fZQoaAZoCWgPQwivRKD6h3VtQJSGlFKUaBVNFQFoFkdAm1dzBAOav3V9lChoBmgJaA9DCLmOccXFL29AlIaUUpRoFU0qAmgWR0CbV4w4sEq2dX2UKGgGaAloD0MIq3XicrwbUUCUhpRSlGgVS7VoFkdAm1hXW4EwFnV9lChoBmgJaA9DCAAapUu/HXBAlIaUUpRoFUvJaBZHQJtYhRQ79yd1fZQoaAZoCWgPQwgPXyaKkOlhQJSGlFKUaBVN6ANoFkdAm1lv336AOXV9lChoBmgJaA9DCE2/RLz1JGtAlIaUUpRoFU09AWgWR0CbXG/PgNwzdX2UKGgGaAloD0MIHVpkO9+7bECUhpRSlGgVS8VoFkdAm1yJJ04io3V9lChoBmgJaA9DCEUuOIM/um9AlIaUUpRoFUvJaBZHQJtcuj8DSw51fZQoaAZoCWgPQwiBlxk2ypxxQJSGlFKUaBVL3WgWR0CbXMLf1pTNdX2UKGgGaAloD0MIT+eKUkLOb0CUhpRSlGgVTZUBaBZHQJtdtOoHcDd1fZQoaAZoCWgPQwgXKCmwgAhuQJSGlFKUaBVLv2gWR0CbXm73wkPddX2UKGgGaAloD0MIyXGndDABb0CUhpRSlGgVS8hoFkdAm16HzMA3k3V9lChoBmgJaA9DCO6wicwc+HBAlIaUUpRoFUvpaBZHQJtenw2ETQF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
my_cool_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e504582415cb08b796ef3a0d393896f31015e16da27a3684ddaa23b62c3c54
3
+ size 147335
my_cool_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
my_cool_model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75f26cd8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75f26cd940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75f26cd9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75f26cda60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f75f26cdaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f75f26cdb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75f26cdc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75f26cdca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f75f26cdd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75f26cddc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75f26cde50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75f26cdee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f75f26c49f0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673589536091157144,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCvcz683gs96HH+Oof05jk0mZk+hHpFugAAgD8AAIA/TezEvZ3fHD+o8pq9LCG6viMRhr3JBUS8AAAAAAAAAAA9vqg+a/mQPb1EHLvWn9q5p3GPPjY2YDoAAIA/AACAP2a6YbyvllI/vqI1vRBSJb/gVPe8BQ/8vAAAAAAAAAAAU7NDvg8HWbwR4Zi8ssSPPKPQwD3olmm9AACAPwAAgD/60Ua+lGnMvKHukLwZ1iS7OfI4PjbA/zsAAIA/AACAPy0psD5Gbww/6mOVPuqNB7+5Ioc+Ki06vQAAAAAAAAAA4C5gPgH1ybyBup244kuNN21VL75XK8Q3AACAPwAAgD/GIew+B69XP6AMzj575ii/BNmyPkRcvLwAAAAAAAAAAC0IXT7pPxw96+wUuvr9vbj5N7Q+0MgEOAAAgD8AAIA/zWyPOttisT9WF9w8PXF0vllpMLwCZY69AAAAAAAAAACaGUW7sH6yP4W+jr3lIWS+ywnIuh4457wAAAAAAAAAAGZ4aL0Ubv+4rfWLtqJ3gDDXxhq8euurNQAAgD8AAIA/zWylOvddtT/S4wI+c8KIPvPMvrpAMO28AAAAAAAAAACgFUw+hTHwPEzYjLrW9lC5u1KFPo4q1zkAAIA/AACAPzNQLT0Gc74/ArITPrWnjL4Lh7m7om+AvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJnDrbh6YbkCUhpRSlIwBbJRL4owBdJRHQJsn2JKraM91fZQoaAZoCWgPQwg/H2XERcpwQJSGlFKUaBVL0WgWR0CbKSwUQCjldX2UKGgGaAloD0MIFvn1Q+zFY0CUhpRSlGgVTegDaBZHQJsqRkPMB6t1fZQoaAZoCWgPQwhUi4hisv5wQJSGlFKUaBVLymgWR0CbKwu0kWykdX2UKGgGaAloD0MIdk8eFmp4XECUhpRSlGgVTegDaBZHQJsrINsnAqN1fZQoaAZoCWgPQwgGvTeGgJptQJSGlFKUaBVLuGgWR0CbKzxqfvnbdX2UKGgGaAloD0MIB+v/HKaecECUhpRSlGgVS81oFkdAmyuBS9/SY3V9lChoBmgJaA9DCCeIug9AO2NAlIaUUpRoFU3oA2gWR0CbLYLronrqdX2UKGgGaAloD0MIuHaiJGSgckCUhpRSlGgVTQ0BaBZHQJsuerq+rU91fZQoaAZoCWgPQwgKKxVUlORwQJSGlFKUaBVLxGgWR0CbLntu1ndwdX2UKGgGaAloD0MITmGlgsrIcUCUhpRSlGgVTUUBaBZHQJsvDg62fCh1fZQoaAZoCWgPQwghA3l2+UtgQJSGlFKUaBVN6ANoFkdAmzDbDQ7cPHV9lChoBmgJaA9DCFG+oIXET3BAlIaUUpRoFU1qAWgWR0CbMVbFS88LdX2UKGgGaAloD0MI325JDlhScECUhpRSlGgVTQ0BaBZHQJsx5g7YChh1fZQoaAZoCWgPQwjMm8O1mpVxQJSGlFKUaBVL4GgWR0CbMhwzch1UdX2UKGgGaAloD0MIwZDVrV44cECUhpRSlGgVS+NoFkdAmzIjQVsUI3V9lChoBmgJaA9DCPt5U5GKB3JAlIaUUpRoFUvXaBZHQJsyMO5J9Rd1fZQoaAZoCWgPQwjLoUW2c19uQJSGlFKUaBVN7gJoFkdAmzJk5uIhyXV9lChoBmgJaA9DCLeYnxuaMW9AlIaUUpRoFUvEaBZHQJszV5xBE8d1fZQoaAZoCWgPQwhM4UGz69NwQJSGlFKUaBVNLQFoFkdAmzOHNs3yZ3V9lChoBmgJaA9DCLyS5Lm+gHBAlIaUUpRoFUvXaBZHQJs0mRPoFFF1fZQoaAZoCWgPQwgkfVpFfxVyQJSGlFKUaBVL2WgWR0CbNSBU70WedX2UKGgGaAloD0MIbJih8UTucECUhpRSlGgVS6hoFkdAmzXAn6VMVXV9lChoBmgJaA9DCEeRtYbSSm5AlIaUUpRoFUu8aBZHQJs13tjTa0x1fZQoaAZoCWgPQwgWNZiGIVlzQJSGlFKUaBVNIwFoFkdAmzagjQiRn3V9lChoBmgJaA9DCKG/0CPGaHFAlIaUUpRoFUuzaBZHQJs22qvNeMR1fZQoaAZoCWgPQwgLKT+p9qExQJSGlFKUaBVLr2gWR0CbNvaG5+YudX2UKGgGaAloD0MIdNNmnAbIcECUhpRSlGgVS8xoFkdAmzd5xrBTGnV9lChoBmgJaA9DCCrgnudPQXBAlIaUUpRoFUvaaBZHQJs3p0NjLB91fZQoaAZoCWgPQwgiiPNwgjpxQJSGlFKUaBVLumgWR0CbODz9jwx4dX2UKGgGaAloD0MIXTRkPArYc0CUhpRSlGgVTTEBaBZHQJs6TLeQ+2V1fZQoaAZoCWgPQwjFOeroOHxuQJSGlFKUaBVLtWgWR0CbOvrO7g89dX2UKGgGaAloD0MIhqsDIO4oTkCUhpRSlGgVS5poFkdAmztGvjfelHV9lChoBmgJaA9DCIFbd/MUHHBAlIaUUpRoFUv1aBZHQJs7fp3X7Lt1fZQoaAZoCWgPQwih2Aqals5xQJSGlFKUaBVLpWgWR0CbPEKVpsXSdX2UKGgGaAloD0MIoKaWrfVjY0CUhpRSlGgVTegDaBZHQJs9LgNwzch1fZQoaAZoCWgPQwhYN94dGcBuQJSGlFKUaBVNbgJoFkdAmz1QieNDMXV9lChoBmgJaA9DCPpH36RpVnBAlIaUUpRoFUu/aBZHQJs9V8Aq/dt1fZQoaAZoCWgPQwh/MPDcO/twQJSGlFKUaBVL5WgWR0CbPV8kleF+dX2UKGgGaAloD0MIiuWWVoMzdECUhpRSlGgVTQoBaBZHQJs9hB9kSVZ1fZQoaAZoCWgPQwjVBFH3AY9gQJSGlFKUaBVN6ANoFkdAmz4D7ALy+nV9lChoBmgJaA9DCFoSoKYWMnJAlIaUUpRoFU0HAWgWR0CbP9GXokiVdX2UKGgGaAloD0MI+prlstE3X0CUhpRSlGgVTegDaBZHQJtAGJfpljF1fZQoaAZoCWgPQwhO0vwxrW9uQJSGlFKUaBVNjwFoFkdAm0BZTQ3PzHV9lChoBmgJaA9DCBegbTXrcHBAlIaUUpRoFUvZaBZHQJtBLfNzKcN1fZQoaAZoCWgPQwhuhbAaSx5xQJSGlFKUaBVNBgFoFkdAm0GMvqTr3XV9lChoBmgJaA9DCNydtdsucHBAlIaUUpRoFUvoaBZHQJtBuAc1fmd1fZQoaAZoCWgPQwjv/+OESWhxQJSGlFKUaBVLr2gWR0CbQcFj/dZadX2UKGgGaAloD0MIZY16iIZRcECUhpRSlGgVS8RoFkdAm0JJjH4oJHV9lChoBmgJaA9DCH2R0JZzfXBAlIaUUpRoFUvNaBZHQJtCrCMxXXB1fZQoaAZoCWgPQwij5UAP9T1yQJSGlFKUaBVNIQFoFkdAm0Pk+1SflXV9lChoBmgJaA9DCOM3hZWKgXJAlIaUUpRoFU0FAWgWR0CbRLUFSsKcdX2UKGgGaAloD0MIjQkxl9QsakCUhpRSlGgVTTgBaBZHQJtFRb0OEuh1fZQoaAZoCWgPQwjKpIY2wANxQJSGlFKUaBVL1WgWR0CbRUwYcebNdX2UKGgGaAloD0MIKQRyiSOwb0CUhpRSlGgVS9doFkdAm0XoBJZntnV9lChoBmgJaA9DCI6tZwiHa3BAlIaUUpRoFUvkaBZHQJtF/HBDXvp1fZQoaAZoCWgPQwhJ9gg1AxtwQJSGlFKUaBVNnQFoFkdAm0YkoBq9G3V9lChoBmgJaA9DCP5+MVvyCnRAlIaUUpRoFUvKaBZHQJtG5p8F6iV1fZQoaAZoCWgPQwgF+kSe5A1yQJSGlFKUaBVL3WgWR0CbRwK/EfkndX2UKGgGaAloD0MImX6JeKsXc0CUhpRSlGgVS9JoFkdAm0dVWsA/93V9lChoBmgJaA9DCFoqb0c4yTjAlIaUUpRoFUulaBZHQJtJHvXsgMd1fZQoaAZoCWgPQwgsZ++MtuBxQJSGlFKUaBVL8mgWR0CbSSiX6ZYxdX2UKGgGaAloD0MIbtqM01Bkc0CUhpRSlGgVS+9oFkdAm0pcaGYa53V9lChoBmgJaA9DCLHh6ZXyEnNAlIaUUpRoFUvDaBZHQJtKi4z7/GV1fZQoaAZoCWgPQwin6bMD7i9xQJSGlFKUaBVLsmgWR0CbSrW7OE/TdX2UKGgGaAloD0MIgQhx5WzqcUCUhpRSlGgVS7VoFkdAm0sEYXO4X3V9lChoBmgJaA9DCNqoTgfyvXBAlIaUUpRoFUulaBZHQJtLZUKiPAB1fZQoaAZoCWgPQwi6u86GfHBxQJSGlFKUaBVL9mgWR0CbS/XSBshxdX2UKGgGaAloD0MI9MMI4VGJcECUhpRSlGgVS8hoFkdAm0xwZbY9PnV9lChoBmgJaA9DCKBP5EmS8HFAlIaUUpRoFUv7aBZHQJtMwwIt16p1fZQoaAZoCWgPQwg7U+i8xtZhQJSGlFKUaBVN6ANoFkdAm07Ocx0uDnV9lChoBmgJaA9DCIiDhChfqGxAlIaUUpRoFUvOaBZHQJtO89KVY6p1fZQoaAZoCWgPQwgGhNbDlxtBQJSGlFKUaBVLtGgWR0CbT3qVhTfjdX2UKGgGaAloD0MI8fPfg9eEbkCUhpRSlGgVS6xoFkdAm0+hsZYPoXV9lChoBmgJaA9DCMXjolrEu29AlIaUUpRoFUvGaBZHQJtQNoJzDGd1fZQoaAZoCWgPQwgMrU7OkAtxQJSGlFKUaBVNDQFoFkdAm1DdZeRgZ3V9lChoBmgJaA9DCBDrjVphXm9AlIaUUpRoFUu/aBZHQJtQ7QokRjB1fZQoaAZoCWgPQwjc1avI6K9wQJSGlFKUaBVLtGgWR0CbUTYg7o0RdX2UKGgGaAloD0MIK4VALnF+cECUhpRSlGgVS7poFkdAm1JF0tAcDXV9lChoBmgJaA9DCFzmdFlMDXFAlIaUUpRoFUvRaBZHQJtSmwIMSbp1fZQoaAZoCWgPQwjrp/+seTxmQJSGlFKUaBVN6ANoFkdAm1Kyb2Dg63V9lChoBmgJaA9DCM6njlUKNHFAlIaUUpRoFU0QAWgWR0CbUuiPQv6CdX2UKGgGaAloD0MIQ8U4fxMCcUCUhpRSlGgVS9RoFkdAm1Xdnwob43V9lChoBmgJaA9DCOF86lglGnBAlIaUUpRoFUu0aBZHQJtWbw1BMSN1fZQoaAZoCWgPQwj7ljldFptxQJSGlFKUaBVLuGgWR0CbVoFs54nndX2UKGgGaAloD0MIaXIxBtbrbkCUhpRSlGgVS9loFkdAm1bftdAxBXV9lChoBmgJaA9DCA5ORL82GHJAlIaUUpRoFUv5aBZHQJtXQqiGnGd1fZQoaAZoCWgPQwivRKD6h3VtQJSGlFKUaBVNFQFoFkdAm1dzBAOav3V9lChoBmgJaA9DCLmOccXFL29AlIaUUpRoFU0qAmgWR0CbV4w4sEq2dX2UKGgGaAloD0MIq3XicrwbUUCUhpRSlGgVS7VoFkdAm1hXW4EwFnV9lChoBmgJaA9DCAAapUu/HXBAlIaUUpRoFUvJaBZHQJtYhRQ79yd1fZQoaAZoCWgPQwgPXyaKkOlhQJSGlFKUaBVN6ANoFkdAm1lv336AOXV9lChoBmgJaA9DCE2/RLz1JGtAlIaUUpRoFU09AWgWR0CbXG/PgNwzdX2UKGgGaAloD0MIHVpkO9+7bECUhpRSlGgVS8VoFkdAm1yJJ04io3V9lChoBmgJaA9DCEUuOIM/um9AlIaUUpRoFUvJaBZHQJtcuj8DSw51fZQoaAZoCWgPQwiBlxk2ypxxQJSGlFKUaBVL3WgWR0CbXMLf1pTNdX2UKGgGaAloD0MIT+eKUkLOb0CUhpRSlGgVTZUBaBZHQJtdtOoHcDd1fZQoaAZoCWgPQwgXKCmwgAhuQJSGlFKUaBVLv2gWR0CbXm73wkPddX2UKGgGaAloD0MIyXGndDABb0CUhpRSlGgVS8hoFkdAm16HzMA3k3V9lChoBmgJaA9DCO6wicwc+HBAlIaUUpRoFUvpaBZHQJtenw2ETQF1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
my_cool_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aabaad90fbf5862481dfa00a1b9e4e3b60bed4c5fb97a4c1ffff1d3a0864cd7e
3
+ size 87929
my_cool_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6736682317bbf68927dc7ecbf66413f8dc72c1fa2455f49afc2cc6229424d75
3
+ size 43393
my_cool_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_cool_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.42660930243272, "std_reward": 52.54099824554688, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T06:32:53.393341"}