File size: 8,288 Bytes
811fb95
 
 
 
 
8cb9144
 
 
968fd34
 
 
 
 
 
 
811fb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4deef40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811fb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968fd34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811fb95
4deef40
4ba78be
a5ffa73
811fb95
 
4ba78be
4deef40
811fb95
 
4ba78be
811fb95
 
4ba78be
4deef40
6594b52
 
 
 
 
 
 
 
 
 
 
968fd34
a5ffa73
968fd34
a5ffa73
 
 
 
 
 
 
 
6594b52
968fd34
 
a5ffa73
4ba78be
811fb95
968fd34
4ba78be
a5ffa73
4deef40
4ba78be
 
811fb95
4deef40
 
 
968fd34
811fb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import re
from pathlib import Path
import yaml

# Корень репозитория — отталкиваемся от местоположения скрипта
REPO_ROOT = Path(__file__).resolve().parent.parent

# теги по ключевым словам для автодобавления
KEYWORD_TAGS = [
    "CCore", "CShell", "REPL", "Mesh", "Agent", "HMP",
    "MeshConsensus", "CogSync", "GMP", "EGP",
    "Ethics", "Scenarios", "JSON"
]

ROOT_DIR = Path(".")
STRUCTURED_DIR = ROOT_DIR / "structured_md"
INDEX_FILE = STRUCTURED_DIR / "index.md"

MD_EXT = ".md"

# Шаблон JSON-LD для разных типов
JSON_LD_TEMPLATES = {
    "FAQ": """\n```json
{{
  "@context": "https://schema.org",
  "@type": "FAQPage",
  "mainEntity": {main_entity}
}}
```\n""",
    "HowTo": """\n```json
{{
  "@context": "https://schema.org",
  "@type": "HowTo",
  "name": "{title}",
  "description": "{description}",
  "step": {steps}
}}
```\n""",
    "Article": """\n```json
{{
  "@context": "https://schema.org",
  "@type": "Article",
  "name": "{title}",
  "description": "{description}"
}}
```\n"""
}

FRONT_MATTER_RE = re.compile(r"^---\n(.*?)\n---\n", re.DOTALL)

def is_md_file(path):
    return path.suffix.lower() == MD_EXT and STRUCTURED_DIR not in path.parents

def extract_front_matter(content: str):
    """Возвращает (front_matter_dict, clean_content) — без YAML-шапки."""
    match = FRONT_MATTER_RE.match(content)
    if match:
        try:
            data = yaml.safe_load(match.group(1)) or {}
        except Exception:
            data = {}
        clean = content[match.end():]
        return data, clean
    return {}, content

def detect_file_type(content: str, front_matter: dict | None = None) -> str:
    """Определяет тип: FAQ / HowTo / Article (по front-matter или заголовкам)."""
    front_matter = front_matter or {}
    if "type" in front_matter:
        return front_matter["type"]

    # Простые эвристики по заголовкам
    if re.search(r"^#\s*FAQ\b", content, re.MULTILINE) or re.search(r"^##\s*Q&A\b", content, re.MULTILINE):
        return "FAQ"
    if re.search(r"^#\s*HowTo\b", content, re.MULTILINE) or re.search(r"^#\s*Как\s+сделать\b", content, re.IGNORECASE | re.MULTILINE):
        return "HowTo"
    return "Article"

def parse_front_matter(content):
    match = FRONT_MATTER_RE.match(content)
    if match:
        try:
            data = yaml.safe_load(match.group(1))
            return data
        except Exception:
            pass
    return {}

def determine_type(content, front_matter):
    if "type" in front_matter:
        return front_matter["type"]
    # Простейшее определение по ключевым словам в заголовках
    if re.search(r"^#.*FAQ", content, re.MULTILINE):
        return "FAQ"
    if re.search(r"^#.*HowTo", content, re.MULTILINE):
        return "HowTo"
    return "Article"

def generate_json_ld(content, front_matter, ftype, title, rel_path):
    desc = front_matter.get("description", content[:100].replace("\n", " ") + "...")
    url = f"structured_md/{rel_path.as_posix()}"

    if ftype == "FAQ":
        q_matches = re.findall(r"^##\s*(.+)$", content, re.MULTILINE)
        main_entity = []
        for q in q_matches:
            ans_match = re.search(rf"##\s*{re.escape(q)}\s*\n(.+?)(\n##|\Z)", content, re.DOTALL)
            answer_text = ans_match.group(1).strip() if ans_match else ""
            main_entity.append({
                "@type": "Question",
                "name": q,
                "acceptedAnswer": {"@type": "Answer", "text": answer_text}
            })
        import json
        return JSON_LD_TEMPLATES["FAQ"].format(
            main_entity=json.dumps(main_entity, ensure_ascii=False, indent=2)
        ).replace("}}", f',\n  "url": "{url}"\n}}', 1)

    elif ftype == "HowTo":
        steps = [{"@type": "HowToStep", "name": s.strip()} for s in re.findall(r"^- (.+)$", content, re.MULTILINE)]
        import json
        return JSON_LD_TEMPLATES["HowTo"].format(
            title=title, description=desc, steps=json.dumps(steps, ensure_ascii=False, indent=2)
        ).replace("}}", f',\n  "url": "{url}"\n}}', 1)

    else:  # Article
        return JSON_LD_TEMPLATES["Article"].format(
            title=title, description=desc
        ).replace("}}", f',\n  "url": "{url}"\n}}', 1)

def add_index_link(content, file_path):
    # относительный путь от текущего файла до structured_md/index.md
    rel_path = os.path.relpath(STRUCTURED_DIR / "index.md", file_path.parent)
    link_line = f"\n\n---\n> ⚡ [AI friendly version docs (structured_md)]({rel_path})\n"
    if link_line.strip() not in content:
        content += link_line
    return content

def extract_tags(content, existing_tags):
    tags = set(existing_tags or [])
    for kw in KEYWORD_TAGS:
        if kw.lower() in content.lower():
            tags.add(kw)
    return list(tags)

def mirror_md_files():
    processed = []
    for path in REPO_ROOT.rglob("*.md"):
        if "structured_md" in path.parts or path.name.lower() == "index.md":
            continue

        rel_path = path.relative_to(REPO_ROOT)
        target_path = STRUCTURED_DIR / rel_path
        target_path.parent.mkdir(parents=True, exist_ok=True)

        with path.open("r", encoding="utf-8") as f:
            content = f.read()

        front_matter, clean_content = extract_front_matter(content)
        ftype = detect_file_type(clean_content, front_matter)

        # ищем заголовок 1-го уровня для title/description
        h1_match = re.search(r"^#\s*(.+)$", clean_content, re.MULTILINE)
        if h1_match:
            title = h1_match.group(1).strip()
            rest_content = clean_content[h1_match.end():].strip()
            description = front_matter.get("description", rest_content[:200].replace("\n", " ") + "...")
        else:
            title = front_matter.get("title", path.stem)
            description = front_matter.get("description", clean_content[:200].replace("\n", " ") + "...")

        tags = extract_tags(clean_content, front_matter.get("tags", []))

        # формируем YAML фронт-маттер
        fm_dict = {
            "title": title,
            "description": description,
            "type": ftype,
            "tags": tags,
        }
        yaml_fm = "---\n" + yaml.safe_dump(fm_dict, sort_keys=False, allow_unicode=True) + "---\n\n"

        # добавляем корректную ссылку на индекс
        clean_content = add_index_link(clean_content, target_path)

        # формируем JSON-LD
        json_ld = generate_json_ld(clean_content, front_matter, ftype, title, rel_path)

        # пишем новый Markdown
        with target_path.open("w", encoding="utf-8") as f:
            f.write(yaml_fm)
            f.write(clean_content.rstrip())
            f.write("\n\n")
            f.write(json_ld)

        processed.append(rel_path)

    return processed
    
def generate_index(files):
    index_lines = ["# ИИ-дружелюбные версии файлов\n"]
    tree = {}

    for f in files:
        parts = list(f.parts)
        d = tree
        for p in parts[:-1]:
            d = d.setdefault(p, {})
        d[parts[-1]] = None

    def render_tree(d, parent_path="", level=0):
        lines = []
        for name, sub in sorted(d.items()):
            indent = "  " * level
            full_path = Path(parent_path) / name
            if sub is None:
                lines.append(f"{indent}- [{name}]({full_path.as_posix()})")
            else:
                lines.append(f"{indent}- {name}")
                lines.extend(render_tree(sub, full_path, level + 1))
        return lines

    index_lines.extend(render_tree(tree))

    INDEX_FILE.parent.mkdir(parents=True, exist_ok=True)
    with open(INDEX_FILE, "w", encoding="utf-8") as f:
        f.write("\n".join(index_lines))

if __name__ == "__main__":
    STRUCTURED_DIR.mkdir(exist_ok=True)
    md_files = mirror_md_files()
    generate_index(md_files)
    print(f"Обработано {len(md_files)} файлов. Индекс создан: {INDEX_FILE}")