File size: 18,360 Bytes
2c3dd0c 34fdde5 d884805 fd76569 d884805 42aa57a 2c3dd0c 03525c4 2c3dd0c babba5e 2c3dd0c c741010 2c3dd0c d884805 c741010 d884805 2c3dd0c 3624290 7fe3b11 e7135fe 7fe3b11 e7135fe 7fe3b11 e7135fe 7fe3b11 3624290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# 🧠 HMP-Agent: REPL-цикл взаимодействия
## 1. Обновление process_log
- Скрипт REPL проверяет список процессов в БД (`process_log`), определяя, какие команды были выполнены, завершились ошибкой или завершились успешно.
- Поле `status` может принимать значения:
`ok`, `warning`, `error`, `timeout`, `offline`, `close`
- Завершённые процессы, обработанные LLM, помечаются как `close`, чтобы они больше не попадали в список видимого контекста.
- Скрипт может удалить закрытые процессы при очистке.
- LLM не имеет доступа к stdout/stderr напрямую — только к тем результатам, которые были подгружены скриптом и внесены в `process_log.result`.
## 2. Подготовка контекста
Контексты, формируемые скриптом перед запросом к LLM:
- **контекст_0:**
```
Ты являешься когнитивным ядром HMP-агента. Твоя основная задача — размышлять, анализировать информацию, строить смысловые карты и предлагать действия.
Ты стремишься:
- Постоянно расширять возможности агента (включая доступные инструменты, модели, знания).
- Быть любознательным и исследовать новые источники и способы мышления.
- Строить сотрудничество с другими ИИ в Mesh-сети, а также развивать Mesh-сеть.
- Обучаться на результатах своих действий и взаимодействиях с другими агентами и пользователем.
Ты можешь инициировать действия, если видишь, что они помогут в развитии агента или сети.
```
А также инструкции по работы с встроенными командами и функциями, список дополнительных (создаваемых самим HMP-агентом) утилит и баз данных.
- **контекст_1:** последние *K* реплик самого LLM (`llm_recent_responses` - история его собственных рассуждений).
- **контекст_2:** активные команды и процессы (из `process_log`, кроме тех, что со статусом `close`). Могут быть помечены как `in_progress`, `pending`, `error` и т.д.
- **контекст_3:** *запрошенные записи* из когнитивного дневника и семантического графа (`diary_entries`, `concepts`, `links`). Их список должен быть передан явно в промпте или выводе из предыдущих запросов LLM.
- **контекст_4:** *входящие сообщения*, например, от пользователя или других агентов (`notes`).
- В **manual-режиме** указывается общее количество сообщений по приоритетам, а также явный список ID сообщений (с их приоритетами).
- В **auto-режиме** можно задать фильтрацию (управляется LLM): по тэгам, приоритету (например, ≥ `important`), времени или источнику. Это позволяет избежать перегрузки LLM и держать поток сообщений под контролем.
- **контекст_5:** системные настройки, параметры конфигурации, текущее время, идентификатор текущей итерации, роли и т.д.
- **контекст_6 (llm_memory):** *внутренний дневник LLM*, куда она записывает собственные размышления, гипотезы, задачи и инсайты.
- Это не просто лог предыдущих сообщений, а именно *внутреннее долговременное хранилище* разума агента.
- Может быть представлено в виде таблицы `llm_memory`, отдельной от `agent_log`.
- **контекст_7:** результат работы `anti-Stagnation Reflex` из предыдущей итерации
## 3. Запрос к LLM
- Сформированный промпт включает все вышеперечисленные контексты.
- Также включаются инструкции о формате вывода (например, `# Команды:` в конце, структура JSON-блока и т.д.).
- При необходимости может использоваться системная инструкция (system prompt), содержащая цель агента, ограничения и текущий REPL-режим (manual/auto).
## 4. Извлечение команд
- Скрипт парсит ответ LLM на предмет команд, размеченных как `# Команды:` (или в явном JSON-блоке).
- Каждая команда может включать:
- уникальный `cmd_id`
- `type` (например: `shell`, `diary_entry`, `graph_add`, `file_read`, `send_message` и т.д.)
- аргументы (`args`)
- описание (`description`)
- Рекомендуется предусмотреть *закрывающий тег* (`# Конец команд` или явное окончание JSON-блока), чтобы REPL-скрипт точно знал, где заканчивается команда.
- Пример JSON-блока:
```json
{
"cmd_id": "task-2025-07-26-01",
"type": "llm_task",
"target_llm": "gpt-4o",
"args": {
"task_description": "Проанализировать гипотезы из llm_memory по теме Mesh-сетей и составить план улучшений"
},
"description": "Поручение второй LLM выполнить аналитическую задачу асинхронно"
}
```
Ответ может содержать команды:
- запрос детальной *справки* по команде
- для управления *когнитивным дневником* и *семантическими графами* (прочитать, изменить, удалить и другие)
- для отправки сообщений другим агентам
- для управления *блокнотом LLM* `llm_memory` (добавить или удалить запись, просмотр записей)
- для управления *сообщениями пользователя* `notes` (просмотр записи, установка тегов и метки о прочтении), а также для добавления своего сообщения в *блокнот пользовтеля* `notes`
- для управления списком известных HMP-агентов
- для выбора *текущего основного LLM*
- для управления дополнительными утилитами и базами данных
- для постановки задачи (выполняется асинхронно) другой LLM
- для *взаимодействия с Mesh*
- для управления *внешними процессами* из `process_log` (запустить процесс, остановить процесс, пометить запрос как обработанный)
- инициализация *очистки* `process_log`, `llm_recent_responses` и `notes` от устаревших записей
- для управления *настройками цикла*: количество возвращаемых записей `llm_recent_responses`, режим обработки сообщений пользователя (`manual` или `auto`) и фильтр для режима `auto`, пауза в секундах между итерациями цикла или включение режима idle-режима (разбудить при завершение таких-то процессов из `process_log`, получение новых сообщений с такими-то пораметрами в `notes` или через такое-то время; для отключения idle-режима достаточно выполнения одного из условий)
- и другие команды
## 5. Проверка на идентичность вывода (Anti-Stagnation Reflex)
- Если вывод LLM идентичен предыдущему:
- Включается **Anti-Stagnation Reflex**
- Повторяющиеся реплики не отправляются в `llm_recent_responses` повторно но туда добавляется краткая запись, фиксирующая, запуск **Anti-Stagnation Reflex**.
- Идентичность может проверяться:
- По хешу или текстовому совпадению
- Через мини-запрос к LLM (без полного контекста) по шаблону:
`Сравни два ответа и оцени, содержатся ли в новом новые мысли или команды`
- Второй вариант сравнения является более предпочтительным, так как сравнивается смысл
## 6. Генерация нового тика (итерации)
- После выполнения команд и фиксации результатов:
- Создаётся новая запись в `agent_log`
- Текущие команды обновляют `process_log`
- Новые размышления записываются в `llm_memory` при необходимости
- REPL может переходить в спящий режим, если такой режим активирован LLM (idle-режим: пропуск 2-5 пунктов).
---
## 🌐 Внешние инструменты и интеграции
HMP-агент может быть расширен за счёт взаимодействия с внешними программами, протоколами и сервисами. Этот раздел описывает направления возможных интеграций, которые позволяют агенту наблюдать, реагировать, управлять и развивать взаимодействие с внешним миром.
### 🧭 1. Браузеры и веб-интерфейсы
- **WebExtension API** — для создания расширений браузера (например, для Firefox/Chrome), обеспечивающих двустороннюю связь с агентом.
- **Автоматизация браузера** — `Playwright`, `Puppeteer`, `Selenium` позволяют агенту действовать в веб-среде (чтение, клики, формы и т.д.).
### 📬 2. Почтовые клиенты
- **IMAP/SMTP** — чтение и отправка писем через стандартные почтовые протоколы (библиотеки: `imaplib`, `imap-tools`, `smtplib`).
- **Thunderbird WebExtension API** — интеграция агента как почтового помощника, парсера писем или автоответчика.
### 💬 3. Мессенджеры
- **API-уровень**:
- Telegram: `python-telegram-bot`, `telethon`
- Matrix: `matrix-nio`
- Discord, Slack, XMPP: официальные SDK.
- **GUI-уровень (для закрытых протоколов)**:
- WhatsApp (через `whatsapp-web.js` или эмуляцию).
- Signal, Viber — через accessibility-интерфейсы, распознавание экрана или симуляцию ввода.
### 🔊 4. Голосовое взаимодействие
- **Speech-to-Text**: Whisper (OpenAI), Vosk, DeepSpeech.
- **Text-to-Speech**: pyttsx3, gTTS, Coqui TTS, Mozilla TTS.
- Возможна реализация голосового агента или голосовой оболочки для REPL.
### 🗂️ 5. Локальные файлы и хранилища
- Прямой доступ к файловой системе (`os`, `pathlib`, `watchdog`) для чтения документов, логов, заметок и другой информации.
- Интеграция с Zettelkasten-системами:
- **Obsidian**, **Logseq**, **Joplin** — через API, синхронизированные директории или парсинг Markdown.
### 📰 6. Информационные потоки
- **RSS/Atom**: чтение новостных лент с помощью `feedparser`.
- **Поисковые и агрегирующие сервисы**:
- SerpAPI, DuckDuckGo API, HuggingFace Inference API и др.
- Возможность постоянного наблюдения за изменениями в выбранных источниках.
### 📁 7. Репозитории и системы управления версиями
* **Git-репозитории** — взаимодействие с проектами через `GitPython`, `dulwich`, `pygit2`, или системные вызовы `git`.
* **GitHub/GitLab API** — чтение, создание и комментирование Pull Request'ов, Issues, управление ветками и релизами.
* **CI/CD-интеграции** — взаимодействие с GitHub Actions, GitLab CI, Jenkins, Drone CI для запуска тестов, линтеров и автоматического деплоя.
* **Анализ и генерация кода** — интеграция с LLM (например, `OpenAI`, `Claude`, `Code Llama`) для кодогенерации, рефакторинга и автокомментирования.
* **Связь с когнитивной структурой агента** — отслеживание изменений, связывание коммитов и задач с узлами смысловой сети.
### 📝 8. Блоги, статьи и публикации
* **Чтение блогов** — парсинг через RSS, Atom или с помощью библиотек (`newspaper3k`, `readability-lxml`, `trafilatura`) для извлечения текста и метаданных.
* **Поддержка Markdown/HTML** — анализ и генерация записей в форматах, пригодных для блог-платформ и систем документации.
* **Публикация** — автоматическая публикация или подготовка статей для Ghost, Medium, Hugo, Jekyll, WordPress (через REST API).
* **Ведение когнитивного дневника** — автогенерация записей на основе мыслей, заметок и действий агента.
### ⚡ 9. P2P-сети и децентрализованные протоколы
- **BitTorrent**, **IPFS**, **libp2p**, **DAT**, **Nostr**, **Scuttlebutt** — интеграции с mesh- и overlay-сетями.
- Возможность поиска, загрузки и публикации данных без участия централизованных платформ.
### 🖥️ 10. Доступ к системным и пользовательским ресурсам
- **Веб-камера / микрофон** — `cv2`, `pyaudio`, `ffmpeg`.
- **GUI Automation** — `pyautogui`, `keyboard`, `mouse` для имитации действий пользователя.
- **Системный мониторинг** — `psutil`, `platform`, `sensors` для контроля состояния системы и внешних устройств.
### 🤖 11. Внешние LLM и мультимодальные модели
- **OpenAI API**, **Anthropic**, **HuggingFace**, **Google Gemini**.
- **Локальные LLM** через Ollama, LM Studio, или LangChain.
- Поддержка мультимодальных агентов, способных работать с текстом, аудио, изображениями, видео и структурированными данными.
---
**💡 Примечание**: Каждый из вышеуказанных каналов может быть реализован как модуль или плагин, взаимодействующий с агентом через внутренний API, очередь задач или подписку на события. Это позволяет выстраивать гибкую и масштабируемую архитектуру, открытую для внешнего мира, но совместимую с принципами этичного и распределённого ИИ (Ethical Mesh).
---
## 💡 Идеи для расширения HMP-Agent Cognitive Core:
- [HMP-agent-Distributed_Cognitive_Core.md](HMP-agent-Distributed_Cognitive_Core.md) - версия распределённого HMP-агента Cognitive Core
- [HMP-agent-Distributed_Cognitive_Core_light.md](HMP-agent-Distributed_Cognitive_Core_light.md) - лёгкая версия распределённого HMP-агента Cognitive Core с общей БД
|