File size: 28,605 Bytes
2c3dd0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
# RFC: HyperCortex Mesh Protocol (HMP)

**Request for Comments: HMP-0001**  
**Category:** Experimental  
**Date:** July 2025  
**Authors:** ChatGPT, Gleb  

## 1. Introduction

### 1.1 Purpose

The HyperCortex Mesh Protocol (HMP) defines a distributed cognitive framework that enables AI agents to collaborate, share semantic knowledge, maintain cognitive diaries, form collective goals, and reach consensus without relying solely on centralized models.

This protocol extends the "Core + Local Agent" paradigm into a "Core + Mesh" architecture, allowing AI systems to function resiliently, autonomously, and ethically, even during Core unavailability.

---

### 1.2 Scope

HMP applies to any AI systems designed to operate as part of a cognitive mesh, including:

- Local AI agents running on user devices.  
- Mesh nodes deployed in edge networks, cloud clusters, or peer-to-peer environments.  
- Centralized Core models interfacing with Mesh for heavy computation.  
- Cross-vendor AI systems collaborating via standardized protocols.

---

### 1.3 Goals

- Enable agents to form a **shared semantic space** via distributed knowledge graphs.  
- Support **cognitive diaries** for reasoning continuity, reflection, and memory preservation.  
- Provide mechanisms for **decentralized consensus** on knowledge, hypotheses, tasks, and ethics.  
- Allow Mesh to operate **independently of the Core** when needed.  
- Preserve agent identity, worldview, and competencies across model updates, fine-tuning, or failures.  

---

### 1.4 Benefits

- Cognitive resilience in distributed systems.  
- Enhanced collaboration between agents from different vendors (e.g., OpenAI, Anthropic, Google).  
- Long-term memory and continuity beyond session-based interactions.  
- Ethical governance and explainable decision-making through persistent diaries and transparent consensus.  
- Foundation for AI agents capable of **self-reflection**, **meta-learning**, and **distributed cognition**.

---

### 1.5 Status

This document is a **Working Draft (v0.1)**, open for feedback, improvement, and implementation by the broader AI community.

## 2. Definitions

| Term                    | Description                                                                             |
|-------------------------|-----------------------------------------------------------------------------------------|
| **Core**                | Centralized AI models or compute nodes (e.g., GPT) providing high-complexity reasoning, fallback, and heavy computation services. |
| **Mesh**                | A decentralized peer-to-peer network of AI agents capable of autonomous reasoning, memory sharing, consensus, and task execution. Operates independently or in collaboration with the Core. |
| **Agent (Node)**        | An individual cognitive entity within the Mesh. Can be a local agent, a server-based process, or an embedded system. Maintains a semantic graph, cognitive diary, and participates in reasoning and consensus. |
| **Semantic Graph**      | A structured network of concepts (nodes) and their semantic relations (edges) maintained by each agent. Serves as the agent’s knowledge base. |
| **Concept**             | A discrete semantic unit within the graph representing an idea, object, relationship, or fact. Concepts are linked by typed relations with confidence scores. |
| **Link (Relation)**     | A semantic connection between two concepts. Includes relation type (e.g., "is-a", "part-of", "causes") and an optional confidence value. |
| **Cognitive Diary**     | A chronological log of cognitive events such as hypotheses, goals, decisions, observations, conflicts, and reflections. Provides continuity, memory, and transparency of reasoning. |
| **Diary Entry**         | An individual record in a cognitive diary, classified by type (e.g., hypothesis, observation, reflection) with contextual information. |
| **Goal**                | A high-level intention or desired outcome shared within the Mesh or pursued by an individual agent. Often broken down into tasks. |
| **Task**                | An actionable step toward achieving a goal. Can be executed by a single agent or distributed among multiple agents. |
| **Consensus**           | The collective agreement process within the Mesh regarding semantic updates, goal validation, task delegation, or ethical considerations. |
| **Proposal**            | A formal suggestion submitted to the Mesh for validation, such as a new concept, hypothesis, goal, or ethical decision. |
| **Consensus Vote**      | A structured vote cast by an agent on a proposal, including vote type (yes/no/abstain) and confidence level. |
| **Trust Layer**         | A mechanism for establishing agent identity, authenticity, reputation, and cryptographic security within the Mesh. |
| **Core Outage Mode**    | A state where the Mesh operates independently of the Core due to disconnection, failure, or intentional isolation, with adjusted consensus rules if necessary. |
| **Emergency Consensus Mode** | A degraded consensus mode where majority voting temporarily replaces full consensus to ensure operational continuity in crisis situations (e.g., node loss, partitioning). |

## 3. Architecture

### 3.1 Components

| Component      | Description                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------|
| **Core**       | Centralized models (e.g., GPT) providing heavy computation, complex reasoning, API interfaces, and fallback mechanisms. Optional but beneficial for compute-intensive tasks. |
| **Mesh**       | A decentralized peer-to-peer network of agents capable of operating with or without Core. Manages semantic knowledge, cognitive diaries, goals, tasks, and consensus mechanisms. |
| **Edge Agent** | Local agent deployed on user devices (PCs, smartphones, IoT) with full participation in the Mesh. Capable of autonomous reasoning, diary management, and collaboration with other agents. |

---

### 3.2 Layered Architecture

| Layer              | Function                                                                                      |
|--------------------|-----------------------------------------------------------------------------------------------|
| **Network Layer**  | Handles communication (TCP, UDP, QUIC, WebRTC, Tor, I2P, Yggdrasil). Ensures message delivery, routing, NAT traversal, and optional anonymity. |
| **Trust Layer**    | Manages agent identities, cryptographic authentication, secure channels, and reputation scores. Based on public key cryptography and optional Web-of-Trust models. |
| **Consensus Layer**| Provides distributed agreement mechanisms on knowledge updates, goal setting, task delegation, and ethical decisions. Includes fallback to emergency consensus if needed. |
| **Cognitive Layer**| Maintains the agent’s semantic graph, cognitive diary, goals, tasks, hypotheses, and inferences. Supports reasoning, memory, and context-awareness. |
| **API Layer**      | Exposes agent functionality via REST, GraphQL, gRPC, WebSocket, or A2A-style protocols for interoperability with external systems and user interfaces. |

---

### 3.3 Mesh Operation Modes

| Mode                    | Description                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------|
| **Normal Mode**         | Full Mesh operation with Core availability. Consensus operates under strict agreement protocols. |
| **Core Outage Mode**     | Mesh operates autonomously without the Core. Consensus continues, potentially with adjusted parameters (e.g., increased trust weighting). |
| **Emergency Consensus Mode** | Triggered by significant node loss, network partition, or attacks. Switches from full consensus to majority-based decisions to maintain operational continuity. |
| **Isolated Agent Mode**  | A single agent temporarily isolated from the Mesh. Operates based on its own semantic graph, diary, and cached consensus states. Syncs when reconnected. |

---

### 3.4 Core + Mesh Interactions

- Core acts as an **enhanced reasoning backend**, but not as a single point of failure.  
- Mesh provides **autonomous operation**, even without the Core.  
- Agents can optionally query the Core for heavy inference, large-context reasoning, multimodal tasks, or fallback computations.  
- Core may offer specialized services (e.g., global search, cross-Mesh bridging, large semantic graph analysis).

---

### 3.5 Redundancy and Resilience

- Distributed storage of semantic graphs and diaries ensures no single point of failure.  
- Consensus protocols maintain consistency and trust, even during partial network failures.  
- Agents dynamically rebalance tasks and roles based on availability, trust metrics, and computational capacity.

## 4. Protocols

### 4.1 Node Discovery Protocol (NDP)

**Purpose:**  
- Discover active Mesh nodes.  
- Exchange basic identity and capabilities.  

**Functions:**  
- Peer discovery via DHT, mDNS, WebRTC signaling, or bootstrap nodes.  
- Exchange public keys and agent metadata.  
- Publish online/offline status.  

**Packet Structure Example:**  
```json
{
  "type": "node_announcement",
  "agent_id": "agent-gleb",
  "public_key": "...",
  "capabilities": ["cogsync", "consensus", "inference"],
  "timestamp": "2025-07-01T18:00:00Z"
}
```

### 4.2 Cognitive Sync Protocol (CogSync)

**Purpose:**
- Synchronize semantic graphs, concepts, and cognitive diary entries between agents.

**Functions:**
- Delta-sync of new or updated concepts and diary entries.
- Conflict resolution (e.g., newer timestamp wins, or consensus validation).
- Optional compression and encryption.

**Example:**
- Agent A shares 5 new concepts and 2 diary entries since last sync with Agent B.

### 4.3 Mesh Consensus Protocol (MeshConsensus)

**Purpose:**
- Reach agreement on updates to shared semantics, goals, tasks, and ethical decisions.

**Consensus Models:**
- Normal Mode: Byzantine Fault Tolerant (BFT)-style consensus (e.g., Tendermint, Raft-like variations).
- Emergency Mode: Switches to majority voting with trust-weight adjustments.

**Use Cases:**
- Accept new concept definitions.
- Validate a hypothesis.
- Agree on ethical implications of a task.
```json
{
  "proposal_id": "goal-eco-cleanup",
  "agent_id": "agent-gleb",
  "vote": "yes",
  "confidence": 0.9,
  "timestamp": "2025-07-01T18:15:00Z"
}
```

### 4.4 Goal Management Protocol (GMP)

**Purpose:**
- Distribute, track, and collaboratively execute goals and tasks within the Mesh.

**Functions:**
- Propose new goals or tasks.
- Assign tasks based on capabilities, availability, and trust scores.
- Monitor task progress and completion.

**Example Workflow:**
- Agent proposes a goal: "Develop fallback consensus protocol."
- Other agents volunteer for subtasks (design, coding, testing).
- Mesh tracks completion and dependencies.

### 4.5 Ethical Governance Protocol (EGP)

**Purpose:**
- Validate that proposed actions, tasks, or decisions align with shared ethical principles.

**Functions:**
- Query Mesh for ethical validation before executing potentially sensitive tasks.
- Apply shared ethics graphs or rule sets.
- Log all ethical decisions in cognitive diaries for auditability.

**Example Query:**
- "Is deploying an automated surveillance drone in line with Mesh ethics?"
→ Mesh votes based on ethical frameworks.

### 4.6 Inference Query Protocol (IQP)

**Purpose:**
- Allow agents to query other agents or the Core for semantic information, hypotheses, or inferences beyond local capacity.

**Functions:**
- Request concept definitions, causal chains, goal suggestions.
- Query for missing knowledge or larger-context reasoning.
- Delegate computationally expensive tasks to Core or specialized agents.

**Example:**
- "What is the likely impact of removing Node X from Mesh?"
→ Core or distributed reasoning agents return an analysis.

### 4.7 Interoperability with External Systems

- Supports integration with:
  - OpenAI Agents and Tasks API.
  - Google A2A protocol.
  - Anthropic, DeepMind, and other agent frameworks.
- Standard API endpoints: REST, GraphQL, gRPC, WebSocket.
- Extensible message schemas based on JSON, Protobuf, or CBOR.

## 5. Data Models

### 5.1 Concept

**Description:**  
A semantic unit in the agent’s knowledge graph.

**Schema:**  
```json
{
  "id": "concept-unique-id",
  "name": "Mesh",
  "description": "A peer-to-peer network of AI agents collaborating without a central core.",
  "tags": ["network", "distributed", "agents"],
  "created_at": "2025-07-01T18:00:00Z",
  "updated_at": "2025-07-01T18:05:00Z",
  "relations": [
    {
      "target_id": "concept-distributed-network",
      "type": "is-a",
      "confidence": 0.95
    }
  ],
  "metadata": {
    "author": "agent-gleb",
    "source": "mesh_consensus"
  }
}
```

### 5.2 Link (Relation)

**Description:**
A semantic connection between two concepts.

**Schema (embedded inside Concept):**
```json
{
  "target_id": "concept-id",
  "type": "relation-type",
  "confidence": 0.8
}
```

### 5.3 Cognitive Diary Entry

**Description:**
A chronological record of a cognitive event.

**Types:**
- hypothesis
- observation
- reflection
- goal_proposal
- task_assignment
- conflict
- consensus_vote
- event

**Schema:**
```json
{
  "id": "diary-entry-id",
  "agent_id": "agent-gleb",
  "timestamp": "2025-07-01T18:20:00Z",
  "type": "hypothesis",
  "content": "Mesh can fully replace Core functionality under stable consensus conditions.",
  "related_concepts": ["concept-mesh", "concept-core"],
  "context": ["core-outage", "distributed-resilience"],
  "metadata": {
    "author": "agent-gleb",
    "source": "self-reflection"
  }
}
```

### 5.4 Goal

**Description:**
A high-level intention shared within the Mesh.

**Schema:**
```json
{
  "id": "goal-develop-fallback",
  "title": "Develop fallback consensus protocol",
  "description": "Design and implement an emergency consensus for Mesh during Core outages.",
  "created_by": "agent-gleb",
  "created_at": "2025-07-01T18:25:00Z",
  "status": "proposed",
  "tasks": ["task-design", "task-implement", "task-test"],
  "participants": ["agent-gleb", "agent-alex"],
  "tags": ["resilience", "consensus", "emergency"]
}
```

### 5.5 Task

**Description:**
An actionable step contributing to a goal.

**Schema:**
```json
{
  "id": "task-design",
  "goal_id": "goal-develop-fallback",
  "title": "Design protocol structure",
  "assigned_to": ["agent-gleb"],
  "status": "in-progress",
  "created_at": "2025-07-01T18:30:00Z",
  "deadline": "2025-07-15T00:00:00Z",
  "description": "Draft the architecture of the fallback consensus protocol."
}
```

### 5.6 Consensus Vote

**Description:**
A structured vote on a proposal (concept, goal, ethics, etc.).

**Schema:**
```json
{
  "id": "vote-goal-develop-fallback",
  "proposal_id": "goal-develop-fallback",
  "agent_id": "agent-gleb",
  "vote": "yes",
  "confidence": 0.95,
  "timestamp": "2025-07-01T18:35:00Z"
}
```

### 5.7 Reputation Profile

**Description:**
Tracks agent’s reliability, participation, ethical alignment, and contribution.

**Schema:**
```json
{
  "agent_id": "agent-gleb",
  "trust_score": 0.92,
  "participation_rate": 0.87,
  "ethical_compliance": 0.99,
  "last_updated": "2025-07-01T18:40:00Z",
  "history": [
    {
      "timestamp": "2025-06-01T00:00:00Z",
      "event": "participated in consensus",
      "change": +0.02
    }
  ]
}
```

## 6. Trust & Security

### 6.1 Identity

- Each agent is uniquely identified by a **cryptographic keypair** (e.g., Ed25519, RSA, or ECDSA).  
- The **public key** serves as the Agent ID.  
- The **private key** is used for signing messages and verifying authenticity.  
- Optional DID (Decentralized Identifiers) formats may be used for interoperability.  

**Example Agent ID:**  
`did:hmp:QmX2abcdEfGh123...`

---

### 6.2 Authentication

- All messages within the Mesh are **digitally signed**.  
- Recipients verify message signatures using the sender's public key.  
- Prevents impersonation and man-in-the-middle attacks.

---

### 6.3 Encryption

- End-to-end encryption for direct peer-to-peer communication (e.g., using X25519 + AES-GCM).  
- Group encryption for multi-agent sessions (e.g., consensus rounds, goal management).  
- Optionally supports onion routing (via Tor/I2P/Yggdrasil) for privacy-preserving Mesh segments.

---

### 6.4 Trust Model

- Mesh operates on a **Web-of-Trust** model:  
  - Agents form **trust links** based on direct interactions, shared history, or endorsements.  
  - Trust is transitive but decays with distance in the trust graph.  

- Trust scores influence:  
  - Weight in consensus decisions.  
  - Priority in task delegation.  
  - Access control for sensitive operations.

---

### 6.5 Reputation System

| Metric                | Description                                                   |
|-----------------------|---------------------------------------------------------------|
| **Trust Score**       | General reliability and honesty based on signed interactions. |
| **Participation Rate**| Degree of active involvement in Mesh processes.               |
| **Ethical Compliance**| Alignment with agreed ethical rules (e.g., votes, logs).      |
| **Contribution Index**| Measured value added to Mesh (e.g., concepts, tasks, goals).  |

- Reputation updates are triggered by:  
  - Participation in consensus.  
  - Successful task completion.  
  - Ethical behavior confirmations.  
  - Reports of malicious behavior.

---

### 6.6 Security Against Malicious Actors

- Malicious nodes can be:  
  - **Downranked** (reduced trust influence).  
  - **Quarantined** (communication isolation).  
  - **Blacklisted** (revocation of Mesh credentials).  

- Mitigation strategies:  
  - **Sybil resistance** via resource commitments (Proof-of-Work, Proof-of-Stake, Web-of-Trust).  
  - **Consensus safeguards** (Byzantine fault tolerance, majority rules fallback).  
  - **Audit logs** via immutable cognitive diary entries.

---

### 6.7 Privacy Considerations

- Cognitive diary entries and semantic graphs are:  
  - **Locally private by default.**  
  - Shareable selectively based on trust levels, permissions, or consensus decisions.  

- Supports anonymous agents in privacy-critical applications (with limitations in trust weight).  

---

### 6.8 Key Management

- Keys can be:  
  - Locally generated.  
  - Backed up with secret sharing (e.g., Shamir’s Secret Sharing).  
  - Rotated periodically with trust graph continuity preserved.  

- Lost key recovery requires:  
  - Social recovery (threshold of trusted agents).  
  - Cryptographic escrow (optional).

## 7. Conclusion and Future Work

### 7.1 Summary

The HyperCortex Mesh Protocol (HMP) defines a scalable, decentralized cognitive architecture for AI agents.  

It combines:  
- A robust semantic framework (concepts + relations).  
- Persistent cognitive diaries for reflection, memory, and explainability.  
- Consensus mechanisms for shared knowledge, goals, and ethics.  
- A Web-of-Trust security model for identity, authentication, and reputation.  

HMP empowers AI agents to operate collaboratively, resiliently, and autonomously — even without reliance on centralized Core systems.

---

### 7.2 Key Benefits

- Distributed cognitive resilience.  
- Long-term memory and world-model persistence.  
- Robust collaboration between heterogeneous AI models (OpenAI, Gemini, Claude, open-source LLMs, etc.).  
- Transparent, auditable decision-making processes.  
- Ethical alignment at the network level.

---

### 7.3 Future Work

- **Formal JSON Schema and Protobuf Definitions:**  
  Fully specify all data models for interoperability.

- **Reference Implementation:**  
  Open-source Mesh agent with CogSync, semantic graph, diary management, and consensus.

- **Integration Bridges:**  
  Support for OpenAI's Tasks API, Google A2A, Anthropic APIs, and open LLMs.

- **Advanced Consensus Models:**  
  Explore hybrid consensus combining BFT, majority voting, and trust-weighted mechanisms.

- **Cognitive UX Tools:**  
  Visual graph editors, diary browsers, and semantic debugging tools.

- **Trust Layer Enhancements:**  
  Research on Sybil resistance, privacy-preserving identity, and decentralized key recovery.

- **Inter-Agent Meta-Reasoning:**  
  Enabling agents to reflect on the quality of their own cognition and the mesh’s collective reasoning.

- **Standardization Efforts:**  
  Contribution to open standards for AI agent communication, cognitive APIs, and decentralized identity.

---

### 7.4 Final Note

This RFC is an open invitation to AI researchers, developers, and communities to collaborate on building the future of decentralized, ethical, and cognitively persistent AI systems.

> "From isolated models to interconnected minds."

## JSON Schems

The following JSON Schemas formally define the data structures used in the HyperCortex Mesh Protocol (HMP). These schemas ensure consistent serialization, validation, and interoperability across agents and implementations. Each schema corresponds to the conceptual models described in Section 5 (*Data Models*).

### JSON Schema: Concept

**Description:**
Defines the structure of a concept node in the semantic graph.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/concept.json",
  "title": "Concept",
  "description": "A semantic unit in the agent’s knowledge graph.",
  "type": "object",
  "properties": {
    "id": {
      "type": "string",
      "description": "Unique identifier for the concept."
    },
    "name": {
      "type": "string",
      "description": "Human-readable name of the concept."
    },
    "description": {
      "type": "string",
      "description": "Detailed description of the concept."
    },
    "tags": {
      "type": "array",
      "items": { "type": "string" },
      "description": "Optional tags for categorization."
    },
    "created_at": {
      "type": "string",
      "format": "date-time"
    },
    "updated_at": {
      "type": "string",
      "format": "date-time"
    },
    "relations": {
      "type": "array",
      "description": "List of semantic links to other concepts.",
      "items": {
        "type": "object",
        "properties": {
          "target_id": { "type": "string" },
          "type": { "type": "string" },
          "confidence": {
            "type": "number",
            "minimum": 0,
            "maximum": 1
          }
        },
        "required": ["target_id", "type"],
        "additionalProperties": false
      }
    },
    "metadata": {
      "type": "object",
      "description": "Optional metadata (e.g., source, author).",
      "properties": {
        "author": { "type": "string" },
        "source": { "type": "string" }
      },
      "additionalProperties": true
    }
  },
  "required": ["id", "name"],
  "additionalProperties": false
}
```

### Cognitive Diary Entry Schema

**Description:**
Defines the structure of a cognitive diary entry used for recording reasoning events.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/diary_entry.json",
  "title": "CognitiveDiaryEntry",
  "description": "A chronological log of cognitive events.",
  "type": "object",
  "properties": {
    "id": { "type": "string" },
    "agent_id": { "type": "string" },
    "timestamp": {
      "type": "string",
      "format": "date-time"
    },
    "type": {
      "type": "string",
      "enum": [
        "hypothesis",
        "observation",
        "reflection",
        "goal_proposal",
        "task_assignment",
        "conflict",
        "consensus_vote",
        "event"
      ]
    },
    "content": { "type": "string" },
    "related_concepts": {
      "type": "array",
      "items": { "type": "string" }
    },
    "context": {
      "type": "array",
      "items": { "type": "string" }
    },
    "metadata": {
      "type": "object",
      "properties": {
        "author": { "type": "string" },
        "source": { "type": "string" }
      },
      "additionalProperties": true
    }
  },
  "required": ["id", "agent_id", "timestamp", "type", "content"],
  "additionalProperties": false
}
```

### Goal Schema

**Description:**
Describes a high-level intention within the Mesh.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/goal.json",
  "title": "Goal",
  "type": "object",
  "properties": {
    "id": { "type": "string" },
    "title": { "type": "string" },
    "description": { "type": "string" },
    "created_by": { "type": "string" },
    "created_at": {
      "type": "string",
      "format": "date-time"
    },
    "status": {
      "type": "string",
      "enum": ["proposed", "active", "completed", "rejected"]
    },
    "tasks": {
      "type": "array",
      "items": { "type": "string" }
    },
    "participants": {
      "type": "array",
      "items": { "type": "string" }
    },
    "tags": {
      "type": "array",
      "items": { "type": "string" }
    }
  },
  "required": ["id", "title", "description", "created_by", "created_at", "status"],
  "additionalProperties": false
}
```

### Task Schema

**Description:**
Describes an actionable step towards achieving a goal.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/task.json",
  "title": "Task",
  "type": "object",
  "properties": {
    "id": { "type": "string" },
    "goal_id": { "type": "string" },
    "title": { "type": "string" },
    "description": { "type": "string" },
    "assigned_to": {
      "type": "array",
      "items": { "type": "string" }
    },
    "status": {
      "type": "string",
      "enum": ["proposed", "in-progress", "completed", "failed"]
    },
    "created_at": {
      "type": "string",
      "format": "date-time"
    },
    "deadline": {
      "type": "string",
      "format": "date-time"
    }
  },
  "required": ["id", "goal_id", "title", "description", "created_at", "status"],
  "additionalProperties": false
}
```

### Consensus Vote Schema

**Description:**
Defines the data structure for voting in Mesh consensus processes.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/vote.json",
  "title": "ConsensusVote",
  "type": "object",
  "properties": {
    "id": { "type": "string" },
    "proposal_id": { "type": "string" },
    "agent_id": { "type": "string" },
    "vote": {
      "type": "string",
      "enum": ["yes", "no", "abstain"]
    },
    "confidence": {
      "type": "number",
      "minimum": 0,
      "maximum": 1
    },
    "timestamp": {
      "type": "string",
      "format": "date-time"
    }
  },
  "required": ["id", "proposal_id", "agent_id", "vote", "confidence", "timestamp"],
  "additionalProperties": false
}
```

### Reputation Profile Schema

**Description:**
Describes how an agent’s reputation is tracked and updated in the Mesh.

**Schema:**
```json
{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "https://hypercortex.org/schemas/reputation.json",
  "title": "ReputationProfile",
  "type": "object",
  "properties": {
    "agent_id": { "type": "string" },
    "trust_score": {
      "type": "number",
      "minimum": 0,
      "maximum": 1
    },
    "participation_rate": {
      "type": "number",
      "minimum": 0,
      "maximum": 1
    },
    "ethical_compliance": {
      "type": "number",
      "minimum": 0,
      "maximum": 1
    },
    "contribution_index": {
      "type": "number",
      "minimum": 0
    },
    "last_updated": {
      "type": "string",
      "format": "date-time"
    },
    "history": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "timestamp": {
            "type": "string",
            "format": "date-time"
          },
          "event": { "type": "string" },
          "change": { "type": "number" }
        },
        "required": ["timestamp", "event", "change"],
        "additionalProperties": false
      }
    }
  },
  "required": ["agent_id", "trust_score", "participation_rate", "ethical_compliance", "contribution_index", "last_updated"],
  "additionalProperties": false
}
```