--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-chinese-med-ner results: [] license: apache-2.0 datasets: - kaishih/CMeEE-V2 language: - zh --- # test-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an CMeEE-V2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4423 - Precision: 0.5197 - Recall: 0.6287 - F1: 0.5690 - Accuracy: 0.8492 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6791 | 1.0 | 938 | 0.4600 | 0.5031 | 0.6096 | 0.5513 | 0.8435 | | 0.3969 | 2.0 | 1876 | 0.4423 | 0.5197 | 0.6287 | 0.5690 | 0.8492 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1