File size: 17,646 Bytes
4ce7387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7617bea
4ce7387
7617bea
 
 
4ce7387
 
 
7617bea
4ce7387
7617bea
4ce7387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from functools import partial
import logging
import re
from typing import Optional, Tuple, Union

from einops import rearrange
from timm.layers import LayerNorm, LayerNorm2d
from timm.layers.pos_embed import resample_abs_pos_embed
from timm.models.regnet import RegStage
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import LlamaForCausalLM
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoModelForCausalLM
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
    Qwen2VLVisionConfig,
)
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
    PatchEmbed,
    Qwen2VLPreTrainedModel,
    Qwen2VisionTransformerPretrainedModel,
    Qwen2VLVisionBlock,
    VisionRotaryEmbedding
)

from .configuration import KananaVVisualProjectorConfig, KananaVConfig

logger = logging.getLogger("kanana-1.5-v")


def build_pos_embeds(
    config: KananaVVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
):
    # pos emb
    if config.pos_emb:
        pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
        nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
    else:
        pos_emb = None

    return pos_emb


def build_eos_tokens(config: KananaVVisualProjectorConfig, output_hidden_size: int):
    # think tokens
    num_eos_tokens = config.num_eos_tokens
    if num_eos_tokens:
        eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
        nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
    else:
        eos_tokens = None

    return eos_tokens


def build_prenorm(config: KananaVVisualProjectorConfig):
    if getattr(config, "prenorm", False):
        prenorm = LayerNorm(config.encoder_hidden_size)
    else:
        prenorm = None
    return prenorm


def build_mlp(depth: int, hidden_size: int, output_hidden_size: int):
    layers = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        layers.append(nn.SiLU())
        layers.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*layers)


class PatchMerge(nn.Module):
    def __init__(self, merge_size):
        super().__init__()
        self.merge_size = merge_size

    def forward(self, x, channel_last=False):
        if channel_last:
            x = rearrange(x, "B H W D -> B D H W")
        _, D, H, W = x.shape
        merged_x = rearrange(
            x, "B D (H h2) (W w2) -> B (D h2 w2) H W", h2=self.merge_size, w2=self.merge_size
        )
        return merged_x


class DynamicCAbstractor(nn.Module):
    """Dynamic C-Abstractor based on RegBlock"""

    def __init__(self, config: KananaVVisualProjectorConfig, num_input_tokens: int):
        super().__init__()
        self.config = config
        if num_input_tokens == -1:
            num_input_tokens = config.pos_emb_size
        self.num_input_tokens = num_input_tokens

        self.merge_size = config.merge_size
        self.pos_emb_size = config.pos_emb_size

        self.eos_tokens = build_eos_tokens(config, config.output_hidden_size)
        self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
        self.prenorm = build_prenorm(config)

        self.build_net()

    def build_net(self):
        encoder_hidden_size = self.config.encoder_hidden_size
        hidden_size = self.config.hidden_size
        output_hidden_size = self.config.output_hidden_size
        depth = self.config.depth
        mlp_depth = self.config.mlp_depth

        RegBlock = partial(
            RegStage,
            stride=1,
            dilation=1,
            act_layer=nn.SiLU,
            norm_layer=LayerNorm2d,
        )

        s1 = RegBlock(
            depth,
            encoder_hidden_size,
            hidden_size,
        )
        sampler = PatchMerge(merge_size=self.merge_size)
        s2 = RegBlock(
            depth,
            self.merge_size**2 * hidden_size,
            hidden_size,
        )

        if depth:
            self.net = nn.ModuleList([s1, sampler, s2])
            self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
        else:
            self.net = sampler
            self.readout = build_mlp(mlp_depth, encoder_hidden_size, output_hidden_size)

    def forward(self, flattened_visual_embeds, grid_thw, **unused_kwargs):
        n_token_loc = torch.prod(grid_thw, dim=1)
        split_visual_embeds = torch.split(flattened_visual_embeds, n_token_loc.tolist())

        flattened_visual_embeds = []
        for _visual_embeds, _grid_thw in zip(split_visual_embeds, grid_thw):
            T, H, W = _grid_thw
            assert T == 1, "T must be 1. Video is not supported yet."
            reshaped_visual_embeds = rearrange(
                _visual_embeds, "(t h w) d -> 1 t h w d", t=T, h=H, w=W
            )
            # remove temporal dim
            reshaped_visual_embeds = reshaped_visual_embeds[:, 0]

            if self.prenorm is not None:
                reshaped_visual_embeds = self.prenorm(reshaped_visual_embeds)

            if self.pos_emb is not None:
                # interpolate pos emb and add to visual embeds
                _local_pos_emb = resample_abs_pos_embed(
                    posemb=self.pos_emb,
                    old_size=tuple([int(self.pos_emb_size**0.5)] * 2),
                    new_size=(H, W),
                    num_prefix_tokens=0,
                )
                _local_pos_emb = rearrange(
                    _local_pos_emb,
                    "1 (h w) d -> 1 h w d",
                    h=H,
                    w=W,
                )
                reshaped_visual_embeds = reshaped_visual_embeds + _local_pos_emb

            reshaped_visual_embeds = self._forward(
                reshaped_visual_embeds,
                input_size=(H, W),
            )
            flattened_visual_embeds.append(reshaped_visual_embeds)
        reshaped_visual_embeds = torch.cat(flattened_visual_embeds, dim=0)
        output = BaseModelOutput(last_hidden_state=reshaped_visual_embeds)
        return output

    def _forward(self, x, input_size):
        h, w = input_size
        x = rearrange(x, "1 h w d -> 1 d h w", h=h, w=w)
        x = self.net[0](x)
        x = self.net[1](x)
        x = self.net[2](x)
        x = rearrange(x, "1 d h w -> (h w) d")
        x = self.readout(x)
        return x


class CustomQwen2VLVE(Qwen2VisionTransformerPretrainedModel):
    config_class = Qwen2VLVisionConfig
    _no_split_modules = ["Qwen2VLVisionBlock"]

    def __init__(self, config) -> None:
        Qwen2VLPreTrainedModel.__init__(self, config)
        self.spatial_merge_size = config.spatial_merge_size
        self.gradient_checkpointing = False

        self.patch_embed = PatchEmbed(
            patch_size=config.patch_size,
            temporal_patch_size=config.temporal_patch_size,
            in_channels=config.in_channels,
            embed_dim=config.embed_dim,
        )

        head_dim = config.embed_dim // config.num_heads
        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList(
            [Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
        )

    def forward(
        self,
        pixel_values: torch.Tensor,
        grid_thw: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        assert return_dict, "Only return_dict=True is supported."

        encoder_states = () if output_hidden_states else None

        hidden_states = self.patch_embed(pixel_values)
        rotary_pos_emb = self.rot_pos_emb(grid_thw)

        cu_seqlens = torch.repeat_interleave(
            grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
        ).cumsum(dim=0, dtype=torch.int32)
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for blk in self.blocks:
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    blk.__call__,
                    hidden_states,
                    cu_seqlens,
                    rotary_pos_emb,
                )
            else:
                layer_outputs = blk(
                    hidden_states,
                    cu_seqlens=cu_seqlens,
                    rotary_pos_emb=rotary_pos_emb,
                )
            hidden_states = layer_outputs
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states] if v is not None)
        return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states)

    def get_num_tokens(self):
        return -1


class KananaVPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    config_class = KananaVConfig
    base_model_prefix = "kanana-1.5-v"
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = False

    _keys_to_ignore_on_load_missing = [
        r"position_ids",
        r"language_model.encoder.embed_tokens.weight",
        r"language_model.decoder.embed_tokens.weight",
        r"language_model.lm_head.weight",
    ]
    _no_split_modules = [
        "CustomQwen2VLVE",
        "DynamicCAbstractor",
        "LlamaForCausalLM",
        "Parameter",
    ]

    def _init_weights(self, module):
        """Initialize the weights"""
        if (
            isinstance(module, nn.Conv2d)
            or isinstance(module, nn.Embedding)
            or isinstance(module, nn.Linear)
        ):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if hasattr(module, "bias") and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Parameter):
            raise ValueError()


class KananaVForConditionalGeneration(KananaVPreTrainedModel):
    config_class = KananaVConfig

    def __init__(self, config: KananaVConfig):
        super().__init__(config)

        logger.info("Build vision model ...")
        self.vision_model = CustomQwen2VLVE._from_config(config.vision_config)

        logger.info("Build projector ...")
        self.abstractor = DynamicCAbstractor(config.projector_config,
                                             num_input_tokens=self.vision_model.get_num_tokens())

        logger.info("Build language model ...")
        self.language_model = LlamaForCausalLM._from_config(config=config.text_config)

        self.post_init()

    def forward_vision(self, pixel_values, image_metas: Optional[dict] = None):
        vision_model_args = {
            "pixel_values": pixel_values,
            "return_dict": True,
            "output_hidden_states": True,
            "grid_thw": image_metas["vision_grid_thw"],
        }
        v_outputs = self.vision_model(**vision_model_args)
        layer_index = self.config.projector_config.feature_layer_index
        visual_features = self._get_visual_feature_at(v_outputs.hidden_states, layer_index)
        return visual_features

    def forward_projector(self, visual_features, image_metas: Optional[dict] = None):
        assert image_metas is not None
        visual_embeds = self.abstractor(
            visual_features,
            grid_thw=image_metas["vision_grid_thw"],
        )["last_hidden_state"]
        return visual_embeds

    def forward_and_project_vision(self, pixel_values, image_metas: Optional[dict] = None):
        assert pixel_values is not None
        visual_features = self.forward_vision(pixel_values, image_metas=image_metas)
        visual_embeds = self.forward_projector(visual_features, image_metas=image_metas)
        return visual_embeds

    def _get_visual_feature_at(self, v_output, layer_index):
        if isinstance(layer_index, list):
            visual_features = torch.stack(v_output, dim=1)[:, layer_index]  # [B, n_scales, L, dim]
        else:
            visual_features = v_output[layer_index]  # [B, L, dim]
        return visual_features

    def embed_text_tokens(self, input_ids):
        """Embed input_ids into text_embeds, ignoring media tokens (negative values)."""
        input_ids = input_ids.clone()
        input_ids[input_ids < 0] = 0

        text_embeds = self.language_model.get_input_embeddings()(input_ids)
        if hasattr(self.language_model, "transformer") and hasattr(
            self.language_model.transformer, "word_embeddings_layernorm"
        ):
            text_embeds = self.language_model.transformer.word_embeddings_layernorm(text_embeds)

        return text_embeds

    def prepare_mm_inputs(
        self,
        input_ids: torch.FloatTensor,
        pixel_values: Optional[list[torch.FloatTensor]] = None,
        image_metas: Optional[dict] = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        """Prepare multimodal inputs from input_ids and pixel_values."""
        if pixel_values is not None:
            pixel_values = pixel_values.to(self._get_input_dtype())

        if attention_mask is None:
            attention_mask = input_ids.new_ones(*input_ids.shape)

        # Get Text Embeddings
        text_embeds = self.embed_text_tokens(input_ids)
        flattened_text_embeds = rearrange(text_embeds, "b l d -> (b l) d")
        flattened_input_ids = rearrange(input_ids, "b l -> (b l)")

        # Get Visual Embeddings
        if pixel_values is not None:
            flattened_visual_embeds = self.forward_and_project_vision(
                pixel_values, image_metas
            )
            flattened_text_embeds[flattened_input_ids == -1] = flattened_visual_embeds

        input_embeds = rearrange(
            flattened_text_embeds, "(b l) d -> b l d", b=input_ids.shape[0]
        )
        return_inputs = {
            "inputs_embeds": input_embeds,
            "attention_mask": attention_mask,
        }
        return return_inputs

    def forward(
        self,
        pixel_values: list[torch.FloatTensor],
        image_metas: dict[list],
        input_ids: torch.FloatTensor,
        seq_length: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        inputs = self.prepare_mm_inputs(
            input_ids=input_ids,
            pixel_values=pixel_values,
            image_metas=image_metas,
            attention_mask=attention_mask,
        )

        outputs = self.language_model(
            **inputs,
            labels=labels,
            position_ids=None,
            return_dict=return_dict,
            output_attentions=self.config.output_attentions,
        )

        return outputs

    @torch.no_grad()
    def generate(
        self,
        pixel_values: torch.FloatTensor = None,
        image_metas: dict[list] = None,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        seq_length: Optional[torch.LongTensor] = None,
        **generate_kwargs,
    ) -> torch.LongTensor:
        """
        Overrides `generate` function to be able to use the model as a conditional generator.

        Args:
            pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
                Input images to be processed.
            input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                The sequence used as a prompt for the generation.
            attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                Mask to avoid performing attention on padding token indices

        Returns:
            captions (list): A list of strings of length batch_size * num_captions.
        """
        if input_ids is None:
            return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs)
        if pixel_values is None:
            return self.language_model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)

        if (
            image_metas is not None
            and image_metas.get("vision_grid_thw") is not None
            and isinstance(image_metas.get("vision_grid_thw"), torch.Tensor)
        ):
            image_metas["vision_grid_thw"] = image_metas["vision_grid_thw"].to(input_ids.device)

        inputs = self.prepare_mm_inputs(
            input_ids=input_ids,
            pixel_values=pixel_values,
            image_metas=image_metas,
            attention_mask=attention_mask,
        )

        outputs = self.language_model.generate(
            **inputs,
            **generate_kwargs,
        )

        return outputs

    def _get_input_dtype(self):
        dtype = next(self.vision_model.parameters()).dtype
        return dtype