File size: 17,646 Bytes
4ce7387 7617bea 4ce7387 7617bea 4ce7387 7617bea 4ce7387 7617bea 4ce7387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from functools import partial
import logging
import re
from typing import Optional, Tuple, Union
from einops import rearrange
from timm.layers import LayerNorm, LayerNorm2d
from timm.layers.pos_embed import resample_abs_pos_embed
from timm.models.regnet import RegStage
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import LlamaForCausalLM
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoModelForCausalLM
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
Qwen2VLVisionConfig,
)
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
PatchEmbed,
Qwen2VLPreTrainedModel,
Qwen2VisionTransformerPretrainedModel,
Qwen2VLVisionBlock,
VisionRotaryEmbedding
)
from .configuration import KananaVVisualProjectorConfig, KananaVConfig
logger = logging.getLogger("kanana-1.5-v")
def build_pos_embeds(
config: KananaVVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
):
# pos emb
if config.pos_emb:
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
else:
pos_emb = None
return pos_emb
def build_eos_tokens(config: KananaVVisualProjectorConfig, output_hidden_size: int):
# think tokens
num_eos_tokens = config.num_eos_tokens
if num_eos_tokens:
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
else:
eos_tokens = None
return eos_tokens
def build_prenorm(config: KananaVVisualProjectorConfig):
if getattr(config, "prenorm", False):
prenorm = LayerNorm(config.encoder_hidden_size)
else:
prenorm = None
return prenorm
def build_mlp(depth: int, hidden_size: int, output_hidden_size: int):
layers = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
layers.append(nn.SiLU())
layers.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*layers)
class PatchMerge(nn.Module):
def __init__(self, merge_size):
super().__init__()
self.merge_size = merge_size
def forward(self, x, channel_last=False):
if channel_last:
x = rearrange(x, "B H W D -> B D H W")
_, D, H, W = x.shape
merged_x = rearrange(
x, "B D (H h2) (W w2) -> B (D h2 w2) H W", h2=self.merge_size, w2=self.merge_size
)
return merged_x
class DynamicCAbstractor(nn.Module):
"""Dynamic C-Abstractor based on RegBlock"""
def __init__(self, config: KananaVVisualProjectorConfig, num_input_tokens: int):
super().__init__()
self.config = config
if num_input_tokens == -1:
num_input_tokens = config.pos_emb_size
self.num_input_tokens = num_input_tokens
self.merge_size = config.merge_size
self.pos_emb_size = config.pos_emb_size
self.eos_tokens = build_eos_tokens(config, config.output_hidden_size)
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
self.prenorm = build_prenorm(config)
self.build_net()
def build_net(self):
encoder_hidden_size = self.config.encoder_hidden_size
hidden_size = self.config.hidden_size
output_hidden_size = self.config.output_hidden_size
depth = self.config.depth
mlp_depth = self.config.mlp_depth
RegBlock = partial(
RegStage,
stride=1,
dilation=1,
act_layer=nn.SiLU,
norm_layer=LayerNorm2d,
)
s1 = RegBlock(
depth,
encoder_hidden_size,
hidden_size,
)
sampler = PatchMerge(merge_size=self.merge_size)
s2 = RegBlock(
depth,
self.merge_size**2 * hidden_size,
hidden_size,
)
if depth:
self.net = nn.ModuleList([s1, sampler, s2])
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
else:
self.net = sampler
self.readout = build_mlp(mlp_depth, encoder_hidden_size, output_hidden_size)
def forward(self, flattened_visual_embeds, grid_thw, **unused_kwargs):
n_token_loc = torch.prod(grid_thw, dim=1)
split_visual_embeds = torch.split(flattened_visual_embeds, n_token_loc.tolist())
flattened_visual_embeds = []
for _visual_embeds, _grid_thw in zip(split_visual_embeds, grid_thw):
T, H, W = _grid_thw
assert T == 1, "T must be 1. Video is not supported yet."
reshaped_visual_embeds = rearrange(
_visual_embeds, "(t h w) d -> 1 t h w d", t=T, h=H, w=W
)
# remove temporal dim
reshaped_visual_embeds = reshaped_visual_embeds[:, 0]
if self.prenorm is not None:
reshaped_visual_embeds = self.prenorm(reshaped_visual_embeds)
if self.pos_emb is not None:
# interpolate pos emb and add to visual embeds
_local_pos_emb = resample_abs_pos_embed(
posemb=self.pos_emb,
old_size=tuple([int(self.pos_emb_size**0.5)] * 2),
new_size=(H, W),
num_prefix_tokens=0,
)
_local_pos_emb = rearrange(
_local_pos_emb,
"1 (h w) d -> 1 h w d",
h=H,
w=W,
)
reshaped_visual_embeds = reshaped_visual_embeds + _local_pos_emb
reshaped_visual_embeds = self._forward(
reshaped_visual_embeds,
input_size=(H, W),
)
flattened_visual_embeds.append(reshaped_visual_embeds)
reshaped_visual_embeds = torch.cat(flattened_visual_embeds, dim=0)
output = BaseModelOutput(last_hidden_state=reshaped_visual_embeds)
return output
def _forward(self, x, input_size):
h, w = input_size
x = rearrange(x, "1 h w d -> 1 d h w", h=h, w=w)
x = self.net[0](x)
x = self.net[1](x)
x = self.net[2](x)
x = rearrange(x, "1 d h w -> (h w) d")
x = self.readout(x)
return x
class CustomQwen2VLVE(Qwen2VisionTransformerPretrainedModel):
config_class = Qwen2VLVisionConfig
_no_split_modules = ["Qwen2VLVisionBlock"]
def __init__(self, config) -> None:
Qwen2VLPreTrainedModel.__init__(self, config)
self.spatial_merge_size = config.spatial_merge_size
self.gradient_checkpointing = False
self.patch_embed = PatchEmbed(
patch_size=config.patch_size,
temporal_patch_size=config.temporal_patch_size,
in_channels=config.in_channels,
embed_dim=config.embed_dim,
)
head_dim = config.embed_dim // config.num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
)
def forward(
self,
pixel_values: torch.Tensor,
grid_thw: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
assert return_dict, "Only return_dict=True is supported."
encoder_states = () if output_hidden_states else None
hidden_states = self.patch_embed(pixel_values)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for blk in self.blocks:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
blk.__call__,
hidden_states,
cu_seqlens,
rotary_pos_emb,
)
else:
layer_outputs = blk(
hidden_states,
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states)
def get_num_tokens(self):
return -1
class KananaVPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = KananaVConfig
base_model_prefix = "kanana-1.5-v"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = False
_keys_to_ignore_on_load_missing = [
r"position_ids",
r"language_model.encoder.embed_tokens.weight",
r"language_model.decoder.embed_tokens.weight",
r"language_model.lm_head.weight",
]
_no_split_modules = [
"CustomQwen2VLVE",
"DynamicCAbstractor",
"LlamaForCausalLM",
"Parameter",
]
def _init_weights(self, module):
"""Initialize the weights"""
if (
isinstance(module, nn.Conv2d)
or isinstance(module, nn.Embedding)
or isinstance(module, nn.Linear)
):
module.weight.data.normal_(mean=0.0, std=0.02)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Parameter):
raise ValueError()
class KananaVForConditionalGeneration(KananaVPreTrainedModel):
config_class = KananaVConfig
def __init__(self, config: KananaVConfig):
super().__init__(config)
logger.info("Build vision model ...")
self.vision_model = CustomQwen2VLVE._from_config(config.vision_config)
logger.info("Build projector ...")
self.abstractor = DynamicCAbstractor(config.projector_config,
num_input_tokens=self.vision_model.get_num_tokens())
logger.info("Build language model ...")
self.language_model = LlamaForCausalLM._from_config(config=config.text_config)
self.post_init()
def forward_vision(self, pixel_values, image_metas: Optional[dict] = None):
vision_model_args = {
"pixel_values": pixel_values,
"return_dict": True,
"output_hidden_states": True,
"grid_thw": image_metas["vision_grid_thw"],
}
v_outputs = self.vision_model(**vision_model_args)
layer_index = self.config.projector_config.feature_layer_index
visual_features = self._get_visual_feature_at(v_outputs.hidden_states, layer_index)
return visual_features
def forward_projector(self, visual_features, image_metas: Optional[dict] = None):
assert image_metas is not None
visual_embeds = self.abstractor(
visual_features,
grid_thw=image_metas["vision_grid_thw"],
)["last_hidden_state"]
return visual_embeds
def forward_and_project_vision(self, pixel_values, image_metas: Optional[dict] = None):
assert pixel_values is not None
visual_features = self.forward_vision(pixel_values, image_metas=image_metas)
visual_embeds = self.forward_projector(visual_features, image_metas=image_metas)
return visual_embeds
def _get_visual_feature_at(self, v_output, layer_index):
if isinstance(layer_index, list):
visual_features = torch.stack(v_output, dim=1)[:, layer_index] # [B, n_scales, L, dim]
else:
visual_features = v_output[layer_index] # [B, L, dim]
return visual_features
def embed_text_tokens(self, input_ids):
"""Embed input_ids into text_embeds, ignoring media tokens (negative values)."""
input_ids = input_ids.clone()
input_ids[input_ids < 0] = 0
text_embeds = self.language_model.get_input_embeddings()(input_ids)
if hasattr(self.language_model, "transformer") and hasattr(
self.language_model.transformer, "word_embeddings_layernorm"
):
text_embeds = self.language_model.transformer.word_embeddings_layernorm(text_embeds)
return text_embeds
def prepare_mm_inputs(
self,
input_ids: torch.FloatTensor,
pixel_values: Optional[list[torch.FloatTensor]] = None,
image_metas: Optional[dict] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""Prepare multimodal inputs from input_ids and pixel_values."""
if pixel_values is not None:
pixel_values = pixel_values.to(self._get_input_dtype())
if attention_mask is None:
attention_mask = input_ids.new_ones(*input_ids.shape)
# Get Text Embeddings
text_embeds = self.embed_text_tokens(input_ids)
flattened_text_embeds = rearrange(text_embeds, "b l d -> (b l) d")
flattened_input_ids = rearrange(input_ids, "b l -> (b l)")
# Get Visual Embeddings
if pixel_values is not None:
flattened_visual_embeds = self.forward_and_project_vision(
pixel_values, image_metas
)
flattened_text_embeds[flattened_input_ids == -1] = flattened_visual_embeds
input_embeds = rearrange(
flattened_text_embeds, "(b l) d -> b l d", b=input_ids.shape[0]
)
return_inputs = {
"inputs_embeds": input_embeds,
"attention_mask": attention_mask,
}
return return_inputs
def forward(
self,
pixel_values: list[torch.FloatTensor],
image_metas: dict[list],
input_ids: torch.FloatTensor,
seq_length: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs = self.prepare_mm_inputs(
input_ids=input_ids,
pixel_values=pixel_values,
image_metas=image_metas,
attention_mask=attention_mask,
)
outputs = self.language_model(
**inputs,
labels=labels,
position_ids=None,
return_dict=return_dict,
output_attentions=self.config.output_attentions,
)
return outputs
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor = None,
image_metas: dict[list] = None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
seq_length: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
"""
Overrides `generate` function to be able to use the model as a conditional generator.
Args:
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
Input images to be processed.
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
The sequence used as a prompt for the generation.
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
Mask to avoid performing attention on padding token indices
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
if input_ids is None:
return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs)
if pixel_values is None:
return self.language_model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
if (
image_metas is not None
and image_metas.get("vision_grid_thw") is not None
and isinstance(image_metas.get("vision_grid_thw"), torch.Tensor)
):
image_metas["vision_grid_thw"] = image_metas["vision_grid_thw"].to(input_ids.device)
inputs = self.prepare_mm_inputs(
input_ids=input_ids,
pixel_values=pixel_values,
image_metas=image_metas,
attention_mask=attention_mask,
)
outputs = self.language_model.generate(
**inputs,
**generate_kwargs,
)
return outputs
def _get_input_dtype(self):
dtype = next(self.vision_model.parameters()).dtype
return dtype
|