File size: 12,498 Bytes
4ce7387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import logging
import math
from typing import Optional, Union
import numpy as np
import torch
from einops import rearrange
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_transforms import convert_to_rgb, resize
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
logger = logging.getLogger("kanana-1.5-v")
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 56 * 56,
max_pixels: int = 14 * 14 * 4 * 1280,
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
elif max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class KananaVImageProcessor(BaseImageProcessor):
def __init__(
self,
do_resize: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, list[float]]] = OPENAI_CLIP_MEAN,
image_std: Optional[Union[float, list[float]]] = OPENAI_CLIP_STD,
do_convert_rgb: bool = True,
min_pixels: int = 56 * 56,
max_pixels: int = 14 * 14 * 4 * 1280,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = Image.BICUBIC
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.merge_size = merge_size
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
self.do_convert_rgb = do_convert_rgb
self.input_data_format = ChannelDimension.LAST
def _preprocess(
self,
images: Union[ImageInput],
do_resize: bool = True,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
(samuel) From image_processing_qwen2_vl.py
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image,
size=(resized_height, resized_width),
resample=resample,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(
image, scale=rescale_factor, input_data_format=input_data_format
)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
processed_images.append(image)
patches = np.array(processed_images)
if data_format == ChannelDimension.LAST:
# Convert from (num_images, height, width, num_channels) format.
patches = rearrange(patches, "N H W C -> N C H W")
if patches.shape[0] == 1:
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
grid_t = patches.shape[0] // self.temporal_patch_size
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
flatten_patches = rearrange(
patches,
"(nT T) C (nH sH H) (nW sW W) -> (nT nH nW sH sW) (C T H W)",
T=self.temporal_patch_size,
H=self.patch_size,
W=self.patch_size,
nH=grid_h // self.merge_size,
nW=grid_w // self.merge_size,
sH=self.merge_size,
sW=self.merge_size,
)
return (
flatten_patches,
(grid_t, grid_h, grid_w),
(resized_height, resized_width),
(height, width),
)
def resize_pil_image(self, image):
"""
if width * height < self.min_pixels:
expansion_ratio = np.ceil(1 / np.sqrt((width * height / self.min_pixels)))
width, height = (width * expansion_ratio, height * expansion_ratio)
"""
ori_width, ori_height = image.size
width, height = (ori_width, ori_height)
if min(width, height) < self.patch_size * self.merge_size:
scale = self.patch_size * self.merge_size / min(width, height)
width, height = (int(width * scale), int(height * scale))
if (width, height) != (ori_width, ori_height):
image = image.resize((width, height), resample=Image.BICUBIC)
return image
def __call__(self, image):
"""
Args:
image:
Return:
image_input (tensors): (number of tiles, 3, H, W)
hw_tiles (tuple): (height, width) of the tiles
hw_best_resolution (tuple): (height, width) of the best resolution (with padding)
hw_orig_resolution (tuple): (height, width) of the original resolution
"""
do_resize = self.do_resize
resample = self.resample
do_rescale = self.do_rescale
rescale_factor = self.rescale_factor
do_normalize = self.do_normalize
image_mean = self.image_mean
image_std = self.image_std
do_convert_rgb = self.do_convert_rgb
input_data_format = self.input_data_format
if image is not None:
# resize imagee if the shortest side is smaller than patch_size * merge_size
image = self.resize_pil_image(image)
patches, image_grid_thw, resized_hw, original_hw = self._preprocess(
images=image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
data_format=ChannelDimension.LAST,
)
pixel_values = torch.tensor(patches)
image_meta = {
"vision_grid_thw": image_grid_thw,
"hw_best_resolution": resized_hw,
"hw_orig_resolution": original_hw,
"image_token_thw": (
image_grid_thw[0],
image_grid_thw[1] // self.merge_size,
image_grid_thw[2] // self.merge_size,
),
}
else:
pixel_values = None
image_meta = None
return {
"pixel_values": pixel_values,
"image_meta": image_meta,
}
|