kalle07 commited on
Commit
70bc59c
·
verified ·
1 Parent(s): 481110e

doclib_by_sevenof9_v1.py

Browse files
Files changed (1) hide show
  1. doclib_by_sevenof9_v1.py +0 -147
doclib_by_sevenof9_v1.py DELETED
@@ -1,147 +0,0 @@
1
- import json
2
- import logging
3
- import os
4
- import sys
5
- from pathlib import Path
6
- from collections import defaultdict
7
- from multiprocessing import get_context
8
- from docling.datamodel.pipeline_options import (
9
- AcceleratorDevice,
10
- AcceleratorOptions,
11
- PdfPipelineOptions,
12
- )
13
- from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
14
- from docling.datamodel.base_models import InputFormat
15
- from docling.document_converter import DocumentConverter, PdfFormatOption
16
- from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
17
-
18
- _log = logging.getLogger(__name__)
19
- logging.basicConfig(level=logging.INFO)
20
-
21
- def extract_clean_table_data(table):
22
- cells = table.get("data", {}).get("table_cells", [])
23
- if not cells:
24
- return None
25
-
26
- max_row = max(cell["end_row_offset_idx"] for cell in cells)
27
- max_col = max(cell["end_col_offset_idx"] for cell in cells)
28
- table_matrix = [["" for _ in range(max_col)] for _ in range(max_row)]
29
-
30
- for cell in cells:
31
- row = cell["start_row_offset_idx"]
32
- col = cell["start_col_offset_idx"]
33
- table_matrix[row][col] = cell.get("text", "").strip()
34
-
35
- column_headers = table_matrix[0]
36
- data_rows = table_matrix[1:]
37
-
38
- structured_rows = []
39
- for row in data_rows:
40
- row_data = {
41
- column_headers[i]: row[i] for i in range(len(column_headers)) if column_headers[i]
42
- }
43
- structured_rows.append(row_data)
44
-
45
- return {
46
- "num_rows": len(data_rows),
47
- "num_columns": len(column_headers),
48
- "columns": column_headers,
49
- "data": structured_rows,
50
- }
51
-
52
- def process_single_pdf(pdf_path: Path, accelerator_options: AcceleratorOptions):
53
- logging.info(f"Verarbeite: {pdf_path.name}")
54
- output_dir = pdf_path.parent
55
-
56
- pipeline_options = PdfPipelineOptions()
57
- pipeline_options.accelerator_options = accelerator_options
58
- pipeline_options.do_ocr = False
59
- pipeline_options.do_table_structure = True
60
- pipeline_options.table_structure_options.do_cell_matching = True
61
-
62
- converter = DocumentConverter(
63
- format_options={
64
- InputFormat.PDF: PdfFormatOption(
65
- pipeline_cls=StandardPdfPipeline,
66
- backend=PyPdfiumDocumentBackend,
67
- pipeline_options=pipeline_options,
68
- )
69
- }
70
- )
71
-
72
- doc = converter.convert(pdf_path).document
73
- doc_dict = doc.export_to_dict()
74
-
75
- page_texts = defaultdict(list)
76
- page_tables = defaultdict(list)
77
-
78
- for text_item in doc_dict.get("texts", []):
79
- if "text" in text_item and "prov" in text_item:
80
- for prov in text_item["prov"]:
81
- page = prov.get("page_no")
82
- if page is not None:
83
- page_texts[page].append(text_item["text"])
84
-
85
- for table_item in doc_dict.get("tables", []):
86
- prov = table_item.get("prov", [])
87
- if not prov:
88
- continue
89
- page = prov[0].get("page_no")
90
- clean_table = extract_clean_table_data(table_item)
91
- if clean_table:
92
- page_tables[page].append(clean_table)
93
-
94
- output_txt_path = output_dir / f"{pdf_path.stem}_extracted.txt"
95
- with open(output_txt_path, "w", encoding="utf-8") as f:
96
- for page_no in sorted(set(page_texts.keys()).union(page_tables.keys())):
97
- f.write(f"=== Page {page_no} ===\n\n")
98
-
99
- texts = page_texts.get(page_no, [])
100
- if texts:
101
- f.write("\n")
102
- f.write("\n".join(texts))
103
- f.write("\n\n")
104
-
105
- tables = page_tables.get(page_no, [])
106
- if tables:
107
- f.write("tabele:\n")
108
- for i, table in enumerate(tables, 1):
109
- table_entry = {
110
- "table_index": i,
111
- **table,
112
- }
113
- f.write(json.dumps(table_entry, ensure_ascii=False, indent=1))
114
- f.write("\n\n")
115
-
116
- logging.info(f"Fertig: {pdf_path.name} → {output_txt_path.name}")
117
-
118
-
119
- def main():
120
- base_dir = Path(__file__).resolve().parent
121
- pdf_files = list(base_dir.glob("*.pdf"))
122
-
123
- if not pdf_files:
124
- print("Keine PDF-Dateien im aktuellen Ordner gefunden.")
125
- return
126
-
127
- print(f"{len(pdf_files)} PDF-Dateien gefunden. Starte Verarbeitung.")
128
-
129
- # Manuell festgelegter VRAM in GB
130
- vram_gb = 16 # YOUR GPU VRAM, Dedicated RAM
131
-
132
- # Anzahl paralleler Prozesse basierend auf VRAM
133
- max_subprocesses = int(vram_gb / 1.3)
134
- print(f"Maximale Anzahl paralleler Subprozesse: {max_subprocesses}")
135
-
136
- accelerator_options = AcceleratorOptions(num_threads=1, device=AcceleratorDevice.AUTO)
137
-
138
- ctx = get_context("spawn")
139
-
140
- # Verteile PDFs auf Prozesse – jeweils eine ganze PDF pro Subprozess
141
- with ctx.Pool(processes=min(max_subprocesses, len(pdf_files))) as pool:
142
- pool.starmap(process_single_pdf, [(pdf_path, accelerator_options) for pdf_path in pdf_files])
143
-
144
- sys.exit(">>> STOP <<<")
145
-
146
- if __name__ == "__main__":
147
- main()