Create new file
Browse files
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,56 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #Importing all the necessary packages
         
     | 
| 2 | 
         
            +
            import nltk
         
     | 
| 3 | 
         
            +
            import librosa
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            import gradio as gr
         
     | 
| 6 | 
         
            +
            from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
         
     | 
| 7 | 
         
            +
            nltk.download("punkt")
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            model_name = "kalmuraee/tokens"
         
     | 
| 11 | 
         
            +
            tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
         
     | 
| 12 | 
         
            +
            model = Wav2Vec2ForCTC.from_pretrained(model_name)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def load_data(input_file):
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
              #reading the file
         
     | 
| 17 | 
         
            +
              speech, sample_rate = librosa.load(input_file)
         
     | 
| 18 | 
         
            +
              #make it 1-D
         
     | 
| 19 | 
         
            +
              if len(speech.shape) > 1: 
         
     | 
| 20 | 
         
            +
                  speech = speech[:,0] + speech[:,1]
         
     | 
| 21 | 
         
            +
              #Resampling the audio at 16KHz
         
     | 
| 22 | 
         
            +
              if sample_rate !=16000:
         
     | 
| 23 | 
         
            +
                speech = librosa.resample(speech, sample_rate,16000)
         
     | 
| 24 | 
         
            +
              return speech
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            def correct_casing(input_sentence):
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
              sentences = nltk.sent_tokenize(input_sentence)
         
     | 
| 30 | 
         
            +
              return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
         
     | 
| 31 | 
         
            +
              
         
     | 
| 32 | 
         
            +
              
         
     | 
| 33 | 
         
            +
              def asr_transcript(input_file):
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
              speech = load_data(input_file)
         
     | 
| 36 | 
         
            +
              #Tokenize
         
     | 
| 37 | 
         
            +
              input_values = tokenizer(speech, return_tensors="pt").input_values
         
     | 
| 38 | 
         
            +
              #Take logits
         
     | 
| 39 | 
         
            +
              logits = model(input_values).logits
         
     | 
| 40 | 
         
            +
              #Take argmax
         
     | 
| 41 | 
         
            +
              predicted_ids = torch.argmax(logits, dim=-1)
         
     | 
| 42 | 
         
            +
              #Get the words from predicted word ids
         
     | 
| 43 | 
         
            +
              transcription = tokenizer.decode(predicted_ids[0])
         
     | 
| 44 | 
         
            +
              #Correcting the letter casing
         
     | 
| 45 | 
         
            +
              transcription = correct_casing(transcription.lower())
         
     | 
| 46 | 
         
            +
              return transcription
         
     | 
| 47 | 
         
            +
              
         
     | 
| 48 | 
         
            +
              
         
     | 
| 49 | 
         
            +
              
         
     | 
| 50 | 
         
            +
              
         
     | 
| 51 | 
         
            +
              gr.Interface(asr_transcript,
         
     | 
| 52 | 
         
            +
                         inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"),
         
     | 
| 53 | 
         
            +
                         outputs = gr.outputs.Textbox(label="Output Text"),
         
     | 
| 54 | 
         
            +
                         title="ASR using Wav2Vec 2.0",
         
     | 
| 55 | 
         
            +
                         description = "This application displays transcribed text for given audio input",
         
     | 
| 56 | 
         
            +
                         examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch()
         
     |