Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Importing all the necessary packages
|
| 2 |
+
import nltk
|
| 3 |
+
import librosa
|
| 4 |
+
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
| 7 |
+
nltk.download("punkt")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
model_name = "kalmuraee/tokens"
|
| 11 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
| 12 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
def load_data(input_file):
|
| 15 |
+
|
| 16 |
+
#reading the file
|
| 17 |
+
speech, sample_rate = librosa.load(input_file)
|
| 18 |
+
#make it 1-D
|
| 19 |
+
if len(speech.shape) > 1:
|
| 20 |
+
speech = speech[:,0] + speech[:,1]
|
| 21 |
+
#Resampling the audio at 16KHz
|
| 22 |
+
if sample_rate !=16000:
|
| 23 |
+
speech = librosa.resample(speech, sample_rate,16000)
|
| 24 |
+
return speech
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def correct_casing(input_sentence):
|
| 28 |
+
|
| 29 |
+
sentences = nltk.sent_tokenize(input_sentence)
|
| 30 |
+
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def asr_transcript(input_file):
|
| 34 |
+
|
| 35 |
+
speech = load_data(input_file)
|
| 36 |
+
#Tokenize
|
| 37 |
+
input_values = tokenizer(speech, return_tensors="pt").input_values
|
| 38 |
+
#Take logits
|
| 39 |
+
logits = model(input_values).logits
|
| 40 |
+
#Take argmax
|
| 41 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 42 |
+
#Get the words from predicted word ids
|
| 43 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
| 44 |
+
#Correcting the letter casing
|
| 45 |
+
transcription = correct_casing(transcription.lower())
|
| 46 |
+
return transcription
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
gr.Interface(asr_transcript,
|
| 52 |
+
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"),
|
| 53 |
+
outputs = gr.outputs.Textbox(label="Output Text"),
|
| 54 |
+
title="ASR using Wav2Vec 2.0",
|
| 55 |
+
description = "This application displays transcribed text for given audio input",
|
| 56 |
+
examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch()
|