File size: 4,536 Bytes
3f01731 1c3f8db 3f01731 159d420 fd28c7d 65e982d fd28c7d 159d420 65e982d 159d420 65e982d 159d420 65e982d 159d420 65e982d 8b6ba3a 159d420 8b6ba3a 159d420 8b6ba3a 159d420 8b6ba3a 159d420 8b6ba3a ff83521 5764a91 3f01731 a06d1b3 1e151ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
base_model: unsloth/mistral-nemo-base-2407-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- question-generation
license: apache-2.0
language:
- en
pipeline_tag: text-generation
inference: true
framework: pytorch
widgets:
- inputs:
instruction: >-
Generate a multiple-choice question (MCQ) based on the passage, provide
options, and indicate the correct option.
context: >-
Photosynthesis is the process by which plants convert sunlight into
energy.
outputs:
question: What is the primary process by which plants convert sunlight into energy?
options:
- A. Photosynthesis
- B. Respiration
- C. Fermentation
- D. Transpiration
correct_option: A
example_title: MCQ Question Generation
- inputs:
instruction: >-
Generate a multiple-choice question (MCQ) based on the passage, provide
options, and indicate the correct option.
context: >-
Cellular respiration is a metabolic process that converts nutrients into
ATP, the energy currency of the cell.
outputs:
question: What is the main purpose of cellular respiration?
options:
- A. Converting nutrients into ATP
- B. Producing oxygen
- C. Generating heat
- D. Breaking down proteins
correct_option: A
example_title: Cellular Respiration MCQ
- inputs:
instruction: Generate a multiple-choice question (MCQ) based on a historical passage
context: >-
The Industrial Revolution began in Great Britain in the late 18th century,
transforming manufacturing processes through mechanization.
outputs:
question: Where did the Industrial Revolution primarily originate?
options:
- A. United States
- B. France
- C. Great Britain
- D. Germany
correct_option: C
example_title: Industrial Revolution MCQ
- inputs:
instruction: Generate a multiple-choice question about environmental science
context: >-
Biodiversity refers to the variety of life forms within a given ecosystem,
including genetic, species, and ecological diversity.
outputs:
question: What does biodiversity encompass?
options:
- A. Only plant species
- B. Genetic, species, and ecological diversity
- C. Only animal populations
- D. Human interactions with nature
correct_option: B
example_title: Biodiversity MCQ
library_name: transformers
---
# Uploaded model
- **Developed by:** kanoza
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-nemo-base-2407-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
# Mistral Nemo MCQ Question Generator
## Overview
A fine-tuned Mistral Nemo model specializing in generating multiple-choice questions (MCQs) across various domains.
## Model Details
- **Base Model**: Mistral Nemo Base 2407
- **Fine-Tuning**: LoRA with 4-bit quantization
- **Training Dataset**: SciQ
- **Primary Task**: Automated MCQ Generation
## Key Features
- Scientific domain question generation
- Supports multiple context types
- High-quality, contextually relevant options
- Configurable question complexity
## Installation
```python
pip install transformers unsloth
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("path/to/model")
tokenizer = AutoTokenizer.from_pretrained("path/to/model")
```
## Usage Example
```python
def generate_mcq(context, instruction):
prompt = f"""
Instruction: {instruction}
Context: {context}
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
return tokenizer.decode(outputs[0])
# Example application
context = "Photosynthesis converts sunlight into plant energy."
mcq = generate_mcq(context, "Create a multiple-choice question")
print(mcq)
```
## Performance Metrics
- BERTScore F1: [Placeholder]
- ROUGE-1 F1: [Placeholder]
- Generation Accuracy: [Placeholder]
## Limitations
- Primarily trained on scientific content
- Requires careful prompt engineering
- Potential bias in question generation
## Ethical Considerations
- Intended for educational research
- Users should verify generated content
## License
Apache 2.0
## Contributing
Contributions welcome! Please open issues/PRs on GitHub.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |