karim155 commited on
Commit
120173b
·
verified ·
1 Parent(s): fdc6615

Model save

Browse files
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  license: apache-2.0
3
  base_model: facebook/convnext-tiny-224
4
  tags:
@@ -17,9 +18,9 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.0987
21
- - Logloss: 1.0987
22
- - Accuracy: {'accuracy': 0.5808823529411765}
23
 
24
  ## Model description
25
 
@@ -51,42 +52,42 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy |
55
- |:-------------:|:-------:|:----:|:---------------:|:-------:|:--------------------------------:|
56
- | No log | 0.9412 | 8 | 1.1618 | 1.1618 | {'accuracy': 0.5882352941176471} |
57
- | 0.9966 | 2.0 | 17 | 1.1464 | 1.1464 | {'accuracy': 0.5845588235294118} |
58
- | 0.9619 | 2.9412 | 25 | 1.1380 | 1.1380 | {'accuracy': 0.5772058823529411} |
59
- | 0.9133 | 4.0 | 34 | 1.1249 | 1.1249 | {'accuracy': 0.5735294117647058} |
60
- | 0.8577 | 4.9412 | 42 | 1.1043 | 1.1043 | {'accuracy': 0.5882352941176471} |
61
- | 0.8092 | 6.0 | 51 | 1.0899 | 1.0899 | {'accuracy': 0.5955882352941176} |
62
- | 0.8092 | 6.9412 | 59 | 1.0927 | 1.0927 | {'accuracy': 0.5845588235294118} |
63
- | 0.772 | 8.0 | 68 | 1.0834 | 1.0834 | {'accuracy': 0.5845588235294118} |
64
- | 0.7128 | 8.9412 | 76 | 1.0730 | 1.0730 | {'accuracy': 0.5845588235294118} |
65
- | 0.6902 | 10.0 | 85 | 1.0788 | 1.0788 | {'accuracy': 0.5882352941176471} |
66
- | 0.645 | 10.9412 | 93 | 1.0649 | 1.0649 | {'accuracy': 0.5808823529411765} |
67
- | 0.591 | 12.0 | 102 | 1.0631 | 1.0631 | {'accuracy': 0.5845588235294118} |
68
- | 0.578 | 12.9412 | 110 | 1.0764 | 1.0764 | {'accuracy': 0.5845588235294118} |
69
- | 0.578 | 14.0 | 119 | 1.0658 | 1.0658 | {'accuracy': 0.5808823529411765} |
70
- | 0.5377 | 14.9412 | 127 | 1.0674 | 1.0674 | {'accuracy': 0.5808823529411765} |
71
- | 0.516 | 16.0 | 136 | 1.0798 | 1.0798 | {'accuracy': 0.5808823529411765} |
72
- | 0.4974 | 16.9412 | 144 | 1.0804 | 1.0804 | {'accuracy': 0.5808823529411765} |
73
- | 0.4649 | 18.0 | 153 | 1.0818 | 1.0818 | {'accuracy': 0.5955882352941176} |
74
- | 0.4422 | 18.9412 | 161 | 1.0742 | 1.0742 | {'accuracy': 0.5808823529411765} |
75
- | 0.4222 | 20.0 | 170 | 1.0862 | 1.0862 | {'accuracy': 0.5735294117647058} |
76
- | 0.4222 | 20.9412 | 178 | 1.0935 | 1.0935 | {'accuracy': 0.5772058823529411} |
77
- | 0.4136 | 22.0 | 187 | 1.0907 | 1.0907 | {'accuracy': 0.5772058823529411} |
78
- | 0.4006 | 22.9412 | 195 | 1.0967 | 1.0967 | {'accuracy': 0.5735294117647058} |
79
- | 0.4032 | 24.0 | 204 | 1.0931 | 1.0931 | {'accuracy': 0.5772058823529411} |
80
- | 0.3805 | 24.9412 | 212 | 1.1000 | 1.1000 | {'accuracy': 0.5845588235294118} |
81
- | 0.3654 | 26.0 | 221 | 1.1078 | 1.1078 | {'accuracy': 0.5661764705882353} |
82
- | 0.3654 | 26.9412 | 229 | 1.0959 | 1.0959 | {'accuracy': 0.5772058823529411} |
83
- | 0.3678 | 28.0 | 238 | 1.0986 | 1.0986 | {'accuracy': 0.5808823529411765} |
84
- | 0.3789 | 28.2353 | 240 | 1.0987 | 1.0987 | {'accuracy': 0.5808823529411765} |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.42.4
90
- - Pytorch 2.3.1+cu121
91
  - Datasets 2.21.0
92
  - Tokenizers 0.19.1
 
1
  ---
2
+ library_name: transformers
3
  license: apache-2.0
4
  base_model: facebook/convnext-tiny-224
5
  tags:
 
18
 
19
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 1.0311
22
+ - Logloss: 1.0311
23
+ - Accuracy: {'accuracy': 0.5626423690205011}
24
 
25
  ## Model description
26
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy |
56
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:---------------------------------:|
57
+ | 1.6135 | 0.9455 | 13 | 1.5881 | 1.5881 | {'accuracy': 0.22323462414578588} |
58
+ | 1.5823 | 1.9636 | 27 | 1.5302 | 1.5302 | {'accuracy': 0.35990888382687924} |
59
+ | 1.4988 | 2.9818 | 41 | 1.4480 | 1.4480 | {'accuracy': 0.4874715261958998} |
60
+ | 1.4303 | 4.0 | 55 | 1.3424 | 1.3424 | {'accuracy': 0.5034168564920274} |
61
+ | 1.3653 | 4.9455 | 68 | 1.2544 | 1.2544 | {'accuracy': 0.5239179954441914} |
62
+ | 1.2232 | 5.9636 | 82 | 1.1867 | 1.1867 | {'accuracy': 0.5239179954441914} |
63
+ | 1.1734 | 6.9818 | 96 | 1.1330 | 1.1330 | {'accuracy': 0.5466970387243736} |
64
+ | 1.0747 | 8.0 | 110 | 1.1197 | 1.1197 | {'accuracy': 0.5626423690205011} |
65
+ | 1.0405 | 8.9455 | 123 | 1.0871 | 1.0871 | {'accuracy': 0.5535307517084282} |
66
+ | 1.0313 | 9.9636 | 137 | 1.0900 | 1.0900 | {'accuracy': 0.5671981776765376} |
67
+ | 0.959 | 10.9818 | 151 | 1.0766 | 1.0766 | {'accuracy': 0.5603644646924829} |
68
+ | 0.9314 | 12.0 | 165 | 1.0608 | 1.0608 | {'accuracy': 0.5603644646924829} |
69
+ | 0.9102 | 12.9455 | 178 | 1.0388 | 1.0388 | {'accuracy': 0.5649202733485194} |
70
+ | 0.8437 | 13.9636 | 192 | 1.0332 | 1.0332 | {'accuracy': 0.5785876993166287} |
71
+ | 0.8234 | 14.9818 | 206 | 1.0302 | 1.0302 | {'accuracy': 0.5763097949886105} |
72
+ | 0.7883 | 16.0 | 220 | 1.0276 | 1.0276 | {'accuracy': 0.5649202733485194} |
73
+ | 0.7364 | 16.9455 | 233 | 1.0278 | 1.0278 | {'accuracy': 0.5649202733485194} |
74
+ | 0.7561 | 17.9636 | 247 | 1.0258 | 1.0258 | {'accuracy': 0.5649202733485194} |
75
+ | 0.7062 | 18.9818 | 261 | 1.0196 | 1.0196 | {'accuracy': 0.5694760820045558} |
76
+ | 0.6897 | 20.0 | 275 | 1.0308 | 1.0308 | {'accuracy': 0.5558086560364465} |
77
+ | 0.6511 | 20.9455 | 288 | 1.0247 | 1.0247 | {'accuracy': 0.5626423690205011} |
78
+ | 0.6338 | 21.9636 | 302 | 1.0310 | 1.0310 | {'accuracy': 0.5603644646924829} |
79
+ | 0.619 | 22.9818 | 316 | 1.0258 | 1.0258 | {'accuracy': 0.5671981776765376} |
80
+ | 0.6008 | 24.0 | 330 | 1.0299 | 1.0299 | {'accuracy': 0.5626423690205011} |
81
+ | 0.601 | 24.9455 | 343 | 1.0329 | 1.0329 | {'accuracy': 0.5671981776765376} |
82
+ | 0.595 | 25.9636 | 357 | 1.0277 | 1.0277 | {'accuracy': 0.5694760820045558} |
83
+ | 0.598 | 26.9818 | 371 | 1.0288 | 1.0288 | {'accuracy': 0.5671981776765376} |
84
+ | 0.5771 | 28.0 | 385 | 1.0311 | 1.0311 | {'accuracy': 0.5603644646924829} |
85
+ | 0.5829 | 28.3636 | 390 | 1.0311 | 1.0311 | {'accuracy': 0.5626423690205011} |
86
 
87
 
88
  ### Framework versions
89
 
90
+ - Transformers 4.44.2
91
+ - Pytorch 2.4.0+cu121
92
  - Datasets 2.21.0
93
  - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:db3a1df1ba7bb8934bd573326ae91354f2caeb19d10788fab7591b09b2a87542
3
  size 111317164
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3d228698e406894db87f8ca48263bde4a8d2b1e6887ecf3bd58d9c819f4a25
3
  size 111317164
runs/Sep04_17-57-52_93e6f912ca7d/events.out.tfevents.1725472680.93e6f912ca7d.1732.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b4ceec9295275a145a3f2bbeaa200a951ef770889cb0ee3f452472c4f3f9f45
3
- size 22324
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a33f22751a87829894f801167b6a1083a8c95f4e3bf2e54c6e27dceac245bb82
3
+ size 23000