Model save
Browse files
README.md
CHANGED
@@ -18,9 +18,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Logloss:
|
23 |
-
- Accuracy: {'accuracy': 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -48,41 +48,22 @@ The following hyperparameters were used during training:
|
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
- lr_scheduler_warmup_ratio: 0.1
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch
|
56 |
-
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
| 0.959 | 10.9818 | 151 | 1.0766 | 1.0766 | {'accuracy': 0.5603644646924829} |
|
68 |
-
| 0.9314 | 12.0 | 165 | 1.0608 | 1.0608 | {'accuracy': 0.5603644646924829} |
|
69 |
-
| 0.9102 | 12.9455 | 178 | 1.0388 | 1.0388 | {'accuracy': 0.5649202733485194} |
|
70 |
-
| 0.8437 | 13.9636 | 192 | 1.0332 | 1.0332 | {'accuracy': 0.5785876993166287} |
|
71 |
-
| 0.8234 | 14.9818 | 206 | 1.0302 | 1.0302 | {'accuracy': 0.5763097949886105} |
|
72 |
-
| 0.7883 | 16.0 | 220 | 1.0276 | 1.0276 | {'accuracy': 0.5649202733485194} |
|
73 |
-
| 0.7364 | 16.9455 | 233 | 1.0278 | 1.0278 | {'accuracy': 0.5649202733485194} |
|
74 |
-
| 0.7561 | 17.9636 | 247 | 1.0258 | 1.0258 | {'accuracy': 0.5649202733485194} |
|
75 |
-
| 0.7062 | 18.9818 | 261 | 1.0196 | 1.0196 | {'accuracy': 0.5694760820045558} |
|
76 |
-
| 0.6897 | 20.0 | 275 | 1.0308 | 1.0308 | {'accuracy': 0.5558086560364465} |
|
77 |
-
| 0.6511 | 20.9455 | 288 | 1.0247 | 1.0247 | {'accuracy': 0.5626423690205011} |
|
78 |
-
| 0.6338 | 21.9636 | 302 | 1.0310 | 1.0310 | {'accuracy': 0.5603644646924829} |
|
79 |
-
| 0.619 | 22.9818 | 316 | 1.0258 | 1.0258 | {'accuracy': 0.5671981776765376} |
|
80 |
-
| 0.6008 | 24.0 | 330 | 1.0299 | 1.0299 | {'accuracy': 0.5626423690205011} |
|
81 |
-
| 0.601 | 24.9455 | 343 | 1.0329 | 1.0329 | {'accuracy': 0.5671981776765376} |
|
82 |
-
| 0.595 | 25.9636 | 357 | 1.0277 | 1.0277 | {'accuracy': 0.5694760820045558} |
|
83 |
-
| 0.598 | 26.9818 | 371 | 1.0288 | 1.0288 | {'accuracy': 0.5671981776765376} |
|
84 |
-
| 0.5771 | 28.0 | 385 | 1.0311 | 1.0311 | {'accuracy': 0.5603644646924829} |
|
85 |
-
| 0.5829 | 28.3636 | 390 | 1.0311 | 1.0311 | {'accuracy': 0.5626423690205011} |
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9429
|
22 |
+
- Logloss: 0.9429
|
23 |
+
- Accuracy: {'accuracy': 0.6371511068334937}
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 10
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy |
|
56 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|:--------------------------------:|
|
57 |
+
| 1.4538 | 0.9846 | 32 | 1.3816 | 1.3816 | {'accuracy': 0.4475457170356112} |
|
58 |
+
| 1.2257 | 2.0 | 65 | 1.1411 | 1.1411 | {'accuracy': 0.5668912415784408} |
|
59 |
+
| 1.0432 | 2.9846 | 97 | 1.0302 | 1.0302 | {'accuracy': 0.6034648700673725} |
|
60 |
+
| 1.0002 | 4.0 | 130 | 0.9979 | 0.9979 | {'accuracy': 0.615014436958614} |
|
61 |
+
| 0.9492 | 4.9846 | 162 | 0.9781 | 0.9781 | {'accuracy': 0.631376323387873} |
|
62 |
+
| 0.9302 | 6.0 | 195 | 0.9664 | 0.9664 | {'accuracy': 0.629451395572666} |
|
63 |
+
| 0.8805 | 6.9846 | 227 | 0.9515 | 0.9515 | {'accuracy': 0.6371511068334937} |
|
64 |
+
| 0.852 | 8.0 | 260 | 0.9504 | 0.9504 | {'accuracy': 0.6256015399422522} |
|
65 |
+
| 0.8352 | 8.9846 | 292 | 0.9468 | 0.9468 | {'accuracy': 0.6371511068334937} |
|
66 |
+
| 0.8245 | 9.8462 | 320 | 0.9429 | 0.9429 | {'accuracy': 0.6371511068334937} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|