karim155 commited on
Commit
bf89a9c
·
verified ·
1 Parent(s): 89d692e

Model save

Browse files
Files changed (1) hide show
  1. README.md +16 -35
README.md CHANGED
@@ -18,9 +18,9 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 1.0311
22
- - Logloss: 1.0311
23
- - Accuracy: {'accuracy': 0.5626423690205011}
24
 
25
  ## Model description
26
 
@@ -48,41 +48,22 @@ The following hyperparameters were used during training:
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
  - lr_scheduler_warmup_ratio: 0.1
51
- - num_epochs: 30
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy |
56
- |:-------------:|:-------:|:----:|:---------------:|:-------:|:---------------------------------:|
57
- | 1.6135 | 0.9455 | 13 | 1.5881 | 1.5881 | {'accuracy': 0.22323462414578588} |
58
- | 1.5823 | 1.9636 | 27 | 1.5302 | 1.5302 | {'accuracy': 0.35990888382687924} |
59
- | 1.4988 | 2.9818 | 41 | 1.4480 | 1.4480 | {'accuracy': 0.4874715261958998} |
60
- | 1.4303 | 4.0 | 55 | 1.3424 | 1.3424 | {'accuracy': 0.5034168564920274} |
61
- | 1.3653 | 4.9455 | 68 | 1.2544 | 1.2544 | {'accuracy': 0.5239179954441914} |
62
- | 1.2232 | 5.9636 | 82 | 1.1867 | 1.1867 | {'accuracy': 0.5239179954441914} |
63
- | 1.1734 | 6.9818 | 96 | 1.1330 | 1.1330 | {'accuracy': 0.5466970387243736} |
64
- | 1.0747 | 8.0 | 110 | 1.1197 | 1.1197 | {'accuracy': 0.5626423690205011} |
65
- | 1.0405 | 8.9455 | 123 | 1.0871 | 1.0871 | {'accuracy': 0.5535307517084282} |
66
- | 1.0313 | 9.9636 | 137 | 1.0900 | 1.0900 | {'accuracy': 0.5671981776765376} |
67
- | 0.959 | 10.9818 | 151 | 1.0766 | 1.0766 | {'accuracy': 0.5603644646924829} |
68
- | 0.9314 | 12.0 | 165 | 1.0608 | 1.0608 | {'accuracy': 0.5603644646924829} |
69
- | 0.9102 | 12.9455 | 178 | 1.0388 | 1.0388 | {'accuracy': 0.5649202733485194} |
70
- | 0.8437 | 13.9636 | 192 | 1.0332 | 1.0332 | {'accuracy': 0.5785876993166287} |
71
- | 0.8234 | 14.9818 | 206 | 1.0302 | 1.0302 | {'accuracy': 0.5763097949886105} |
72
- | 0.7883 | 16.0 | 220 | 1.0276 | 1.0276 | {'accuracy': 0.5649202733485194} |
73
- | 0.7364 | 16.9455 | 233 | 1.0278 | 1.0278 | {'accuracy': 0.5649202733485194} |
74
- | 0.7561 | 17.9636 | 247 | 1.0258 | 1.0258 | {'accuracy': 0.5649202733485194} |
75
- | 0.7062 | 18.9818 | 261 | 1.0196 | 1.0196 | {'accuracy': 0.5694760820045558} |
76
- | 0.6897 | 20.0 | 275 | 1.0308 | 1.0308 | {'accuracy': 0.5558086560364465} |
77
- | 0.6511 | 20.9455 | 288 | 1.0247 | 1.0247 | {'accuracy': 0.5626423690205011} |
78
- | 0.6338 | 21.9636 | 302 | 1.0310 | 1.0310 | {'accuracy': 0.5603644646924829} |
79
- | 0.619 | 22.9818 | 316 | 1.0258 | 1.0258 | {'accuracy': 0.5671981776765376} |
80
- | 0.6008 | 24.0 | 330 | 1.0299 | 1.0299 | {'accuracy': 0.5626423690205011} |
81
- | 0.601 | 24.9455 | 343 | 1.0329 | 1.0329 | {'accuracy': 0.5671981776765376} |
82
- | 0.595 | 25.9636 | 357 | 1.0277 | 1.0277 | {'accuracy': 0.5694760820045558} |
83
- | 0.598 | 26.9818 | 371 | 1.0288 | 1.0288 | {'accuracy': 0.5671981776765376} |
84
- | 0.5771 | 28.0 | 385 | 1.0311 | 1.0311 | {'accuracy': 0.5603644646924829} |
85
- | 0.5829 | 28.3636 | 390 | 1.0311 | 1.0311 | {'accuracy': 0.5626423690205011} |
86
 
87
 
88
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.9429
22
+ - Logloss: 0.9429
23
+ - Accuracy: {'accuracy': 0.6371511068334937}
24
 
25
  ## Model description
26
 
 
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
  - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 10
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy |
56
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:--------------------------------:|
57
+ | 1.4538 | 0.9846 | 32 | 1.3816 | 1.3816 | {'accuracy': 0.4475457170356112} |
58
+ | 1.2257 | 2.0 | 65 | 1.1411 | 1.1411 | {'accuracy': 0.5668912415784408} |
59
+ | 1.0432 | 2.9846 | 97 | 1.0302 | 1.0302 | {'accuracy': 0.6034648700673725} |
60
+ | 1.0002 | 4.0 | 130 | 0.9979 | 0.9979 | {'accuracy': 0.615014436958614} |
61
+ | 0.9492 | 4.9846 | 162 | 0.9781 | 0.9781 | {'accuracy': 0.631376323387873} |
62
+ | 0.9302 | 6.0 | 195 | 0.9664 | 0.9664 | {'accuracy': 0.629451395572666} |
63
+ | 0.8805 | 6.9846 | 227 | 0.9515 | 0.9515 | {'accuracy': 0.6371511068334937} |
64
+ | 0.852 | 8.0 | 260 | 0.9504 | 0.9504 | {'accuracy': 0.6256015399422522} |
65
+ | 0.8352 | 8.9846 | 292 | 0.9468 | 0.9468 | {'accuracy': 0.6371511068334937} |
66
+ | 0.8245 | 9.8462 | 320 | 0.9429 | 0.9429 | {'accuracy': 0.6371511068334937} |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
 
69
  ### Framework versions