--- library_name: transformers license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnext-tiny-224-finetuned results: [] --- # convnext-tiny-224-finetuned This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9429 - Logloss: 0.9429 - Accuracy: {'accuracy': 0.6371511068334937} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:-------:|:--------------------------------:| | 1.4538 | 0.9846 | 32 | 1.3816 | 1.3816 | {'accuracy': 0.4475457170356112} | | 1.2257 | 2.0 | 65 | 1.1411 | 1.1411 | {'accuracy': 0.5668912415784408} | | 1.0432 | 2.9846 | 97 | 1.0302 | 1.0302 | {'accuracy': 0.6034648700673725} | | 1.0002 | 4.0 | 130 | 0.9979 | 0.9979 | {'accuracy': 0.615014436958614} | | 0.9492 | 4.9846 | 162 | 0.9781 | 0.9781 | {'accuracy': 0.631376323387873} | | 0.9302 | 6.0 | 195 | 0.9664 | 0.9664 | {'accuracy': 0.629451395572666} | | 0.8805 | 6.9846 | 227 | 0.9515 | 0.9515 | {'accuracy': 0.6371511068334937} | | 0.852 | 8.0 | 260 | 0.9504 | 0.9504 | {'accuracy': 0.6256015399422522} | | 0.8352 | 8.9846 | 292 | 0.9468 | 0.9468 | {'accuracy': 0.6371511068334937} | | 0.8245 | 9.8462 | 320 | 0.9429 | 0.9429 | {'accuracy': 0.6371511068334937} | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1