--- license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnext-tiny-224-finetuned results: [] --- # convnext-tiny-224-finetuned This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0987 - Logloss: 1.0987 - Accuracy: {'accuracy': 0.5808823529411765} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:-------:|:--------------------------------:| | No log | 0.9412 | 8 | 1.1618 | 1.1618 | {'accuracy': 0.5882352941176471} | | 0.9966 | 2.0 | 17 | 1.1464 | 1.1464 | {'accuracy': 0.5845588235294118} | | 0.9619 | 2.9412 | 25 | 1.1380 | 1.1380 | {'accuracy': 0.5772058823529411} | | 0.9133 | 4.0 | 34 | 1.1249 | 1.1249 | {'accuracy': 0.5735294117647058} | | 0.8577 | 4.9412 | 42 | 1.1043 | 1.1043 | {'accuracy': 0.5882352941176471} | | 0.8092 | 6.0 | 51 | 1.0899 | 1.0899 | {'accuracy': 0.5955882352941176} | | 0.8092 | 6.9412 | 59 | 1.0927 | 1.0927 | {'accuracy': 0.5845588235294118} | | 0.772 | 8.0 | 68 | 1.0834 | 1.0834 | {'accuracy': 0.5845588235294118} | | 0.7128 | 8.9412 | 76 | 1.0730 | 1.0730 | {'accuracy': 0.5845588235294118} | | 0.6902 | 10.0 | 85 | 1.0788 | 1.0788 | {'accuracy': 0.5882352941176471} | | 0.645 | 10.9412 | 93 | 1.0649 | 1.0649 | {'accuracy': 0.5808823529411765} | | 0.591 | 12.0 | 102 | 1.0631 | 1.0631 | {'accuracy': 0.5845588235294118} | | 0.578 | 12.9412 | 110 | 1.0764 | 1.0764 | {'accuracy': 0.5845588235294118} | | 0.578 | 14.0 | 119 | 1.0658 | 1.0658 | {'accuracy': 0.5808823529411765} | | 0.5377 | 14.9412 | 127 | 1.0674 | 1.0674 | {'accuracy': 0.5808823529411765} | | 0.516 | 16.0 | 136 | 1.0798 | 1.0798 | {'accuracy': 0.5808823529411765} | | 0.4974 | 16.9412 | 144 | 1.0804 | 1.0804 | {'accuracy': 0.5808823529411765} | | 0.4649 | 18.0 | 153 | 1.0818 | 1.0818 | {'accuracy': 0.5955882352941176} | | 0.4422 | 18.9412 | 161 | 1.0742 | 1.0742 | {'accuracy': 0.5808823529411765} | | 0.4222 | 20.0 | 170 | 1.0862 | 1.0862 | {'accuracy': 0.5735294117647058} | | 0.4222 | 20.9412 | 178 | 1.0935 | 1.0935 | {'accuracy': 0.5772058823529411} | | 0.4136 | 22.0 | 187 | 1.0907 | 1.0907 | {'accuracy': 0.5772058823529411} | | 0.4006 | 22.9412 | 195 | 1.0967 | 1.0967 | {'accuracy': 0.5735294117647058} | | 0.4032 | 24.0 | 204 | 1.0931 | 1.0931 | {'accuracy': 0.5772058823529411} | | 0.3805 | 24.9412 | 212 | 1.1000 | 1.1000 | {'accuracy': 0.5845588235294118} | | 0.3654 | 26.0 | 221 | 1.1078 | 1.1078 | {'accuracy': 0.5661764705882353} | | 0.3654 | 26.9412 | 229 | 1.0959 | 1.0959 | {'accuracy': 0.5772058823529411} | | 0.3678 | 28.0 | 238 | 1.0986 | 1.0986 | {'accuracy': 0.5808823529411765} | | 0.3789 | 28.2353 | 240 | 1.0987 | 1.0987 | {'accuracy': 0.5808823529411765} | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1