Model save
Browse files
README.md
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: swin-tiny-patch4-window7-224-finetuned
|
10 |
results: []
|
@@ -17,9 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
-
|
22 |
-
-
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -47,22 +53,27 @@ The following hyperparameters were used during training:
|
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
-
- num_epochs:
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch
|
55 |
-
|
56 |
-
| 1.
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
-
- Transformers 4.
|
66 |
-
- Pytorch 2.
|
67 |
- Datasets 2.21.0
|
68 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: microsoft/swin-tiny-patch4-window7-224
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
model-index:
|
13 |
- name: swin-tiny-patch4-window7-224-finetuned
|
14 |
results: []
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.8847
|
25 |
+
- Accuracy: 0.6612
|
26 |
+
- Precision: 0.6590
|
27 |
+
- Recall: 0.6612
|
28 |
+
- F1: 0.6504
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 1.089 | 0.9846 | 32 | 1.0433 | 0.5919 | 0.5706 | 0.5919 | 0.5663 |
|
63 |
+
| 1.0165 | 2.0 | 65 | 1.0114 | 0.5929 | 0.6008 | 0.5929 | 0.5521 |
|
64 |
+
| 0.935 | 2.9846 | 97 | 0.9437 | 0.6372 | 0.6627 | 0.6372 | 0.6069 |
|
65 |
+
| 0.9051 | 4.0 | 130 | 0.9239 | 0.6400 | 0.6381 | 0.6400 | 0.6328 |
|
66 |
+
| 0.856 | 4.9846 | 162 | 0.9269 | 0.6381 | 0.6476 | 0.6381 | 0.6319 |
|
67 |
+
| 0.8317 | 6.0 | 195 | 0.9115 | 0.6487 | 0.6536 | 0.6487 | 0.6367 |
|
68 |
+
| 0.7914 | 6.9846 | 227 | 0.8913 | 0.6660 | 0.6622 | 0.6660 | 0.6558 |
|
69 |
+
| 0.763 | 8.0 | 260 | 0.8967 | 0.6631 | 0.6610 | 0.6631 | 0.6568 |
|
70 |
+
| 0.7079 | 8.9846 | 292 | 0.9005 | 0.6612 | 0.6638 | 0.6612 | 0.6519 |
|
71 |
+
| 0.6984 | 9.8462 | 320 | 0.8847 | 0.6612 | 0.6590 | 0.6612 | 0.6504 |
|
72 |
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
+
- Transformers 4.44.2
|
77 |
+
- Pytorch 2.4.0+cu121
|
78 |
- Datasets 2.21.0
|
79 |
- Tokenizers 0.19.1
|