Add BERTopic model
Browse files- README.md +106 -0
- config.json +17 -0
- ctfidf.safetensors +3 -0
- ctfidf_config.json +0 -0
- topic_embeddings.safetensors +3 -0
- topics.json +0 -0
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- bertopic
|
5 |
+
library_name: bertopic
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
---
|
8 |
+
|
9 |
+
# BERTopic_Economic
|
10 |
+
|
11 |
+
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
+
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
To use this model, please install BERTopic:
|
17 |
+
|
18 |
+
```
|
19 |
+
pip install -U bertopic
|
20 |
+
```
|
21 |
+
|
22 |
+
You can use the model as follows:
|
23 |
+
|
24 |
+
```python
|
25 |
+
from bertopic import BERTopic
|
26 |
+
topic_model = BERTopic.load("karinegabsschon/BERTopic_Economic")
|
27 |
+
|
28 |
+
topic_model.get_topic_info()
|
29 |
+
```
|
30 |
+
|
31 |
+
## Topic overview
|
32 |
+
|
33 |
+
* Number of topics: 37
|
34 |
+
* Number of training documents: 1290
|
35 |
+
|
36 |
+
<details>
|
37 |
+
<summary>Click here for an overview of all topics.</summary>
|
38 |
+
|
39 |
+
| Topic ID | Topic Keywords | Topic Frequency | Label |
|
40 |
+
|----------|----------------|-----------------|-------|
|
41 |
+
| -1 | electric - car - cars - vehicles - new | 10 | -1_electric_car_cars_vehicles |
|
42 |
+
| 0 | byd - chinese - china - market - electric | 249 | 0_byd_chinese_china_market |
|
43 |
+
| 1 | tesla - sales - musk - year - europe | 131 | 1_tesla_sales_musk_year |
|
44 |
+
| 2 | new - used - year - car - month | 86 | 2_new_used_year_car |
|
45 |
+
| 3 | rivian - motley - motley fool - fool - stocks | 55 | 3_rivian_motley_motley fool_fool |
|
46 |
+
| 4 | charging - charging points - points - stations - charging stations | 52 | 4_charging_charging points_points_stations |
|
47 |
+
| 5 | tesla - musk - trump - elon - elon musk | 45 | 5_tesla_musk_trump_elon |
|
48 |
+
| 6 | spain - electric - moves - ebro - plan | 38 | 6_spain_electric_moves_ebro |
|
49 |
+
| 7 | charging - czech - ev charging - slovakia - czech republic | 37 | 7_charging_czech_ev charging_slovakia |
|
50 |
+
| 8 | units - ukraine - used - region - vehicles | 33 | 8_units_ukraine_used_region |
|
51 |
+
| 9 | tesla - musk - gerber - tsla - elon | 33 | 9_tesla_musk_gerber_tsla |
|
52 |
+
| 10 | hyundai - billion - honda - plant - nissan | 32 | 10_hyundai_billion_honda_plant |
|
53 |
+
| 11 | tax - car - pay - car tax - drivers | 31 | 11_tax_car_pay_car tax |
|
54 |
+
| 12 | percent - cars - previous year - registrations - previous | 30 | 12_percent_cars_previous year_registrations |
|
55 |
+
| 13 | million - iea - sales - global - electric | 29 | 13_million_iea_sales_global |
|
56 |
+
| 14 | cars - tax - purchase - federal - government | 29 | 14_cars_tax_purchase_federal |
|
57 |
+
| 15 | xiaomi - nio - li - chinese - yu7 | 28 | 15_xiaomi_nio_li_chinese |
|
58 |
+
| 16 | quarter - tesla - sales - electric vehicle - gm | 26 | 16_quarter_tesla_sales_electric vehicle |
|
59 |
+
| 17 | volvo - audi - jobs - cent - company | 23 | 17_volvo_audi_jobs_cent |
|
60 |
+
| 18 | public - charging - uk - charge - ev | 23 | 18_public_charging_uk_charge |
|
61 |
+
| 19 | discounts - combustion - dudenhöffer - cars - prices | 23 | 19_discounts_combustion_dudenhöffer_cars |
|
62 |
+
| 20 | euros - electric - french - aid - energy | 22 | 20_euros_electric_french_aid |
|
63 |
+
| 21 | china - shanghai - chinese - market - car | 22 | 21_china_shanghai_chinese_market |
|
64 |
+
| 22 | id - vw - every1 - id every1 - 000 euros | 19 | 22_id_vw_every1_id every1 |
|
65 |
+
| 23 | ferrari - stellantis - italy - elkann - october | 17 | 23_ferrari_stellantis_italy_elkann |
|
66 |
+
| 24 | foxconn - mitsubishi - japanese - nissan - mitsubishi motors | 17 | 24_foxconn_mitsubishi_japanese_nissan |
|
67 |
+
| 25 | belarus - charging - stations - electric - electric charging | 16 | 25_belarus_charging_stations_electric |
|
68 |
+
| 26 | volkswagen - europe - vw - group - percent | 16 | 26_volkswagen_europe_vw_group |
|
69 |
+
| 27 | german - vw - market - group - percent | 15 | 27_german_vw_market_group |
|
70 |
+
| 28 | used - used car - cars - percent - autoscout24 | 15 | 28_used_used car_cars_percent |
|
71 |
+
| 29 | vinfast - vf - vietnamese - vinfast auto - quarter | 14 | 29_vinfast_vf_vietnamese_vinfast auto |
|
72 |
+
| 30 | drivers - home - ev - petrol - charging | 13 | 30_drivers_home_ev_petrol |
|
73 |
+
| 31 | uk - car - government - mandate - evs | 13 | 31_uk_car_government_mandate |
|
74 |
+
| 32 | pod - pod point - point - edf - charging | 13 | 32_pod_pod point_point_edf |
|
75 |
+
| 33 | india - tata - ev - tata motors - plans | 12 | 33_india_tata_ev_tata motors |
|
76 |
+
| 34 | russia - electric - sales - passenger - voyah | 12 | 34_russia_electric_sales_passenger |
|
77 |
+
| 35 | analysts - gm - energy - general motors - general | 11 | 35_analysts_gm_energy_general motors |
|
78 |
+
|
79 |
+
</details>
|
80 |
+
|
81 |
+
## Training hyperparameters
|
82 |
+
|
83 |
+
* calculate_probabilities: False
|
84 |
+
* language: None
|
85 |
+
* low_memory: False
|
86 |
+
* min_topic_size: 10
|
87 |
+
* n_gram_range: (1, 1)
|
88 |
+
* nr_topics: None
|
89 |
+
* seed_topic_list: None
|
90 |
+
* top_n_words: 10
|
91 |
+
* verbose: True
|
92 |
+
* zeroshot_min_similarity: 0.7
|
93 |
+
* zeroshot_topic_list: None
|
94 |
+
|
95 |
+
## Framework versions
|
96 |
+
|
97 |
+
* Numpy: 2.0.2
|
98 |
+
* HDBSCAN: 0.8.40
|
99 |
+
* UMAP: 0.5.8
|
100 |
+
* Pandas: 2.2.2
|
101 |
+
* Scikit-Learn: 1.6.1
|
102 |
+
* Sentence-transformers: 4.1.0
|
103 |
+
* Transformers: 4.53.0
|
104 |
+
* Numba: 0.60.0
|
105 |
+
* Plotly: 5.24.1
|
106 |
+
* Python: 3.11.13
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"calculate_probabilities": false,
|
3 |
+
"language": null,
|
4 |
+
"low_memory": false,
|
5 |
+
"min_topic_size": 10,
|
6 |
+
"n_gram_range": [
|
7 |
+
1,
|
8 |
+
1
|
9 |
+
],
|
10 |
+
"nr_topics": null,
|
11 |
+
"seed_topic_list": null,
|
12 |
+
"top_n_words": 10,
|
13 |
+
"verbose": true,
|
14 |
+
"zeroshot_min_similarity": 0.7,
|
15 |
+
"zeroshot_topic_list": null,
|
16 |
+
"embedding_model": "ibm-granite/granite-embedding-125m-english"
|
17 |
+
}
|
ctfidf.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a5604b408d3fe81f7f985c2da4bd37d9fedf55538cb543c585ca8a1f92be878
|
3 |
+
size 3295128
|
ctfidf_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
topic_embeddings.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f29ce0ae33a10e72e188f2161a8ada77e3973048303c7d9473911042ef6ace5
|
3 |
+
size 113752
|
topics.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|