--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # BERTopic_Social This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("karinegabsschon/BERTopic_Social") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 13 * Number of training documents: 205
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | new - electric - seat - car - manual | 5 | -1_new_electric_seat_car | | 0 | electric - car - ev - charging - cent | 25 | 0_electric_car_ev_charging | | 1 | tesla - musk - elon - elon musk - vehicle | 54 | 1_tesla_musk_elon_elon musk | | 2 | new - nissan - citroen - car - retro | 30 | 2_new_nissan_citroen_car | | 3 | percent - cars - car - private - electric | 15 | 3_percent_cars_car_private | | 4 | chinese - china - electric - xiaomi - cars | 15 | 4_chinese_china_electric_xiaomi | | 5 | electric - vehicles - french - electric car - price | 12 | 5_electric_vehicles_french_electric car | | 6 | renault - car - electric - mg - new | 12 | 6_renault_car_electric_mg | | 7 | german - trust - brands - quality - german brands | 9 | 7_german_trust_brands_quality | | 8 | units - electric - april - russia - electric vehicles | 8 | 8_units_electric_april_russia | | 9 | sharing - car sharing - car - audi - club | 8 | 9_sharing_car sharing_car_audi | | 10 | used - carmax - car - used car - cars | 6 | 10_used_carmax_car_used car | | 11 | best - ev9 - puma - edmunds - electric | 6 | 11_best_ev9_puma_edmunds |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 2.0.2 * HDBSCAN: 0.8.40 * UMAP: 0.5.8 * Pandas: 2.2.2 * Scikit-Learn: 1.6.1 * Sentence-transformers: 4.1.0 * Transformers: 4.53.0 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.11.13