File size: 28,648 Bytes
e187118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:9960000
- loss:BinaryCrossEntropyLoss
base_model: jhu-clsp/ettin-encoder-1b
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-1b
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.6418
      name: Map
    - type: mrr@10
      value: 0.6372
      name: Mrr@10
    - type: ndcg@10
      value: 0.7051
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3816
      name: Map
    - type: mrr@10
      value: 0.5641
      name: Mrr@10
    - type: ndcg@10
      value: 0.4148
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.724
      name: Map
    - type: mrr@10
      value: 0.7315
      name: Mrr@10
    - type: ndcg@10
      value: 0.7717
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.5824
      name: Map
    - type: mrr@10
      value: 0.6443
      name: Mrr@10
    - type: ndcg@10
      value: 0.6305
      name: Ndcg@10
---

# CrossEncoder based on jhu-clsp/ettin-encoder-1b

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) <!-- at revision befd76be43d08b89ff9957012f3ff29d0842780b -->
- **Maximum Sequence Length:** 7999 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("kdhole/reranker-ettin-encoder-1b-msmarco-bce-10m")
# Get scores for pairs of texts
pairs = [
    ['what is the zip code for hamilton nj', 'Stats and Demographics for the 21227 ZIP Code. ZIP code 21227 is located in Maryland and covers a slightly less than average land area compared to other ZIP codes in the United States. It also has a slightly larger than average population density.n addition to the primary city for a ZIP code, USPS also publishes a list of other acceptable cities that can be used with ZIP code 21227. However, if you are mailing something to ZIP code 21227, you should not use any of the cities listed as unacceptable.'],
    ['which cooking oil is healthy', "Photo Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease.All oils are pure fat, however, which means they're high in calories.hoto Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease."],
    ['what canadian cities have the highest crime rates?', 'Saginaw, TX Tarrant County crime report and crime data. Compare the rate to other cities, state average, and national average.'],
    ['how to delete bcc', 'How to delete the CC/BCC rule. 1  Open Auto BCC dialog box. 2  Select the rule you need in the list and click the Delete button on the top toolbar or the Delete key on your keyboard. 3  Confirm deletion and click Ok to save changes.'],
    ['what county is waukegan illinois in?', 'Downtown Waukegan is the urban center of Lake County. Many restaurants, bars, shops, the Waukegan Public Library, the College of Lake County, the Lake County Courthouse (including the William D. Block Memorial Law Library), and much more call Downtown Waukegan their home.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what is the zip code for hamilton nj',
    [
        'Stats and Demographics for the 21227 ZIP Code. ZIP code 21227 is located in Maryland and covers a slightly less than average land area compared to other ZIP codes in the United States. It also has a slightly larger than average population density.n addition to the primary city for a ZIP code, USPS also publishes a list of other acceptable cities that can be used with ZIP code 21227. However, if you are mailing something to ZIP code 21227, you should not use any of the cities listed as unacceptable.',
        "Photo Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease.All oils are pure fat, however, which means they're high in calories.hoto Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease.",
        'Saginaw, TX Tarrant County crime report and crime data. Compare the rate to other cities, state average, and national average.',
        'How to delete the CC/BCC rule. 1  Open Auto BCC dialog box. 2  Select the rule you need in the list and click the Delete button on the top toolbar or the Delete key on your keyboard. 3  Confirm deletion and click Ok to save changes.',
        'Downtown Waukegan is the urban center of Lake County. Many restaurants, bars, shops, the Waukegan Public Library, the College of Lake County, the Lake County Courthouse (including the William D. Block Memorial Law Library), and much more call Downtown Waukegan their home.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.6418 (+0.1522)     | 0.3816 (+0.1206)     | 0.7240 (+0.3044)     |
| mrr@10      | 0.6372 (+0.1597)     | 0.5641 (+0.0642)     | 0.7315 (+0.3048)     |
| **ndcg@10** | **0.7051 (+0.1647)** | **0.4148 (+0.0898)** | **0.7717 (+0.2710)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5824 (+0.1924)     |
| mrr@10      | 0.6443 (+0.1763)     |
| **ndcg@10** | **0.6305 (+0.1752)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 9,960,000 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | passage                                                                                           | score                                                          |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            | float                                                          |
  | details | <ul><li>min: 10 characters</li><li>mean: 33.92 characters</li><li>max: 156 characters</li></ul> | <ul><li>min: 80 characters</li><li>mean: 344.88 characters</li><li>max: 1061 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                 | passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | score            |
  |:--------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>what is liquid resources</code> | <code>Renewable Resources. Renewable resources are resources that are replenished by the environment over relatively short periods of time. This type of resource is much more desirable to use because often a resource renews so fast that it will have regenerated by the time you've used it up.n contrast to renewable resources, non-renewable resources are resources that are not easily replenished by the environment. Let's think about this in terms of that ice cube maker again.</code> | <code>0.0</code> |
  | <code>halo laser treatment</code>     | <code>Laser surgery (photocoagulation) With laser surgery, your ophthalmologist uses a laser to make small burns around the retinal tear. The scarring that results seals the retina to the underlying tissue, helping to prevent a retinal detachment. Freezing treatment (cryopexy)</code>                                                                                                                                                                                                          | <code>0.0</code> |
  | <code>three motorcycle car</code>     | <code>Can-Am Spyder roadster: three wheeled motorcycle. February 20, 2007 BRP has unveiled its first on-road vehicle, the 2008 Can-Am Spyder roadster. This three-wheel vehicle, with two wheels in the front and one in the rear, offers a completely new and stunning look. Powered by a proven 990cc V Twin engine designed and manufactured by BRP-Rotax, Spyder roadster, with its unique Y-architecture, can be described as part motorcycle and part convertible sports car.</code>            | <code>1.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 40,000 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | passage                                                                                          | score                                                          |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           | float                                                          |
  | details | <ul><li>min: 12 characters</li><li>mean: 34.65 characters</li><li>max: 132 characters</li></ul> | <ul><li>min: 65 characters</li><li>mean: 345.56 characters</li><li>max: 874 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                           | passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | score            |
  |:----------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>what is the zip code for hamilton nj</code>               | <code>Stats and Demographics for the 21227 ZIP Code. ZIP code 21227 is located in Maryland and covers a slightly less than average land area compared to other ZIP codes in the United States. It also has a slightly larger than average population density.n addition to the primary city for a ZIP code, USPS also publishes a list of other acceptable cities that can be used with ZIP code 21227. However, if you are mailing something to ZIP code 21227, you should not use any of the cities listed as unacceptable.</code>                                                                                                                                                            | <code>0.0</code> |
  | <code>which cooking oil is healthy</code>                       | <code>Photo Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease.All oils are pure fat, however, which means they're high in calories.hoto Credit bgfoto126/iStock/Getty Images. Olive oil may get all the press, but safflower oil is emerging as a health superstar in its own right. Made from the seeds of safflowers, which are similar to sunflowers, this oil contains healthy fats and may even help prevent cardiovascular disease.</code> | <code>0.0</code> |
  | <code>what canadian cities have the highest crime rates?</code> | <code>Saginaw, TX Tarrant County crime report and crime data. Compare the rate to other cities, state average, and national average.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch      | Step      | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1         | -1        | -             | -               | 0.0000 (-0.5404)         | 0.2648 (-0.0602)          | 0.0388 (-0.4618)     | 0.1012 (-0.3541)           |
| 0.0000     | 1         | 0.8074        | -               | -                        | -                         | -                    | -                          |
| 0.0643     | 10000     | 0.1734        | 0.1322          | 0.6852 (+0.1448)         | 0.3939 (+0.0689)          | 0.7987 (+0.2980)     | 0.6259 (+0.1706)           |
| **0.1285** | **20000** | **0.1273**    | **0.1189**      | **0.7051 (+0.1647)**     | **0.4148 (+0.0898)**      | **0.7717 (+0.2710)** | **0.6305 (+0.1752)**       |
| 0.1928     | 30000     | 0.1104        | 0.1027          | 0.7116 (+0.1712)         | 0.4199 (+0.0948)          | 0.7473 (+0.2467)     | 0.6263 (+0.1709)           |
| 0.2570     | 40000     | 0.0958        | 0.0929          | 0.6721 (+0.1317)         | 0.4184 (+0.0933)          | 0.7930 (+0.2923)     | 0.6278 (+0.1724)           |
| 0.3213     | 50000     | 0.0847        | 0.0773          | 0.6695 (+0.1291)         | 0.3852 (+0.0602)          | 0.7673 (+0.2666)     | 0.6074 (+0.1520)           |
| 0.3855     | 60000     | 0.0746        | 0.0696          | 0.7101 (+0.1697)         | 0.4118 (+0.0868)          | 0.7599 (+0.2592)     | 0.6273 (+0.1719)           |
| 0.4498     | 70000     | 0.0672        | 0.0618          | 0.6663 (+0.1259)         | 0.3761 (+0.0511)          | 0.7701 (+0.2694)     | 0.6042 (+0.1488)           |
| 0.5141     | 80000     | 0.0603        | 0.0552          | 0.6773 (+0.1369)         | 0.3854 (+0.0603)          | 0.7780 (+0.2774)     | 0.6136 (+0.1582)           |
| 0.5783     | 90000     | 0.0544        | 0.0527          | 0.7135 (+0.1731)         | 0.3787 (+0.0537)          | 0.7756 (+0.2749)     | 0.6226 (+0.1672)           |
| 0.6426     | 100000    | 0.0487        | 0.0459          | 0.6979 (+0.1575)         | 0.3926 (+0.0676)          | 0.7583 (+0.2576)     | 0.6163 (+0.1609)           |
| 0.7068     | 110000    | 0.045         | 0.0405          | 0.7091 (+0.1687)         | 0.3653 (+0.0403)          | 0.7517 (+0.2511)     | 0.6087 (+0.1533)           |
| 0.7711     | 120000    | 0.0403        | 0.0386          | 0.6964 (+0.1560)         | 0.3840 (+0.0590)          | 0.7767 (+0.2760)     | 0.6191 (+0.1637)           |
| 0.8353     | 130000    | 0.036         | 0.0322          | 0.7017 (+0.1613)         | 0.3732 (+0.0482)          | 0.7575 (+0.2568)     | 0.6108 (+0.1554)           |
| 0.8996     | 140000    | 0.0325        | 0.0283          | 0.7006 (+0.1602)         | 0.3814 (+0.0563)          | 0.7595 (+0.2588)     | 0.6138 (+0.1585)           |
| 0.9639     | 150000    | 0.0298        | 0.0255          | 0.6920 (+0.1516)         | 0.3719 (+0.0469)          | 0.7797 (+0.2791)     | 0.6146 (+0.1592)           |
| -1         | -1        | -             | -               | 0.7051 (+0.1647)         | 0.4148 (+0.0898)          | 0.7717 (+0.2710)     | 0.6305 (+0.1752)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->