Upload microllama_v2.yaml with huggingface_hub
Browse files- microllama_v2.yaml +121 -0
microllama_v2.yaml
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
|
| 3 |
+
# ``model_config``. (type: Optional[str], default: null)
|
| 4 |
+
model_name: micro-llama-300M-v2
|
| 5 |
+
|
| 6 |
+
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
|
| 7 |
+
# ``model_config``. (type: Optional[Config], default: null)
|
| 8 |
+
model_config:
|
| 9 |
+
|
| 10 |
+
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
|
| 11 |
+
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
|
| 12 |
+
out_dir: out/pretrain/micro-llama-v2
|
| 13 |
+
|
| 14 |
+
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
|
| 15 |
+
precision: bf16-mixed
|
| 16 |
+
|
| 17 |
+
# Optional path to a checkpoint directory to initialize the model from.
|
| 18 |
+
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
|
| 19 |
+
# initial_checkpoint_dir: /root/litgpt/out_lightning_ai/pretrain/micro-llama-v2/step-00128000/
|
| 20 |
+
initial_checkpoint_dir: /root/litgpt/out_lightning_ai/step-00128000-converted
|
| 21 |
+
|
| 22 |
+
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
|
| 23 |
+
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
|
| 24 |
+
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
|
| 25 |
+
# (type: Union[bool, Literal["auto"], Path], default: False)
|
| 26 |
+
resume: False
|
| 27 |
+
|
| 28 |
+
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
|
| 29 |
+
data: MicroLlama
|
| 30 |
+
|
| 31 |
+
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
|
| 32 |
+
train:
|
| 33 |
+
|
| 34 |
+
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
|
| 35 |
+
save_interval: 1000
|
| 36 |
+
|
| 37 |
+
# Number of iterations between logging calls (type: int, default: 1)
|
| 38 |
+
log_interval: 10
|
| 39 |
+
|
| 40 |
+
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 48)
|
| 41 |
+
# Scale this number according to the number of GPU and memory size per GPU
|
| 42 |
+
# For example, we used 16 for 4 x 48G L40s
|
| 43 |
+
global_batch_size: 32
|
| 44 |
+
|
| 45 |
+
# Number of samples per data-parallel rank (type: int, default: 12)
|
| 46 |
+
# Scale this number according to the memory size per GPU
|
| 47 |
+
# For example, we used 12 for 24G 4090
|
| 48 |
+
micro_batch_size: 4
|
| 49 |
+
|
| 50 |
+
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
| 51 |
+
lr_warmup_steps: 2000
|
| 52 |
+
|
| 53 |
+
# Number of epochs to train on (type: Optional[int], default: null)
|
| 54 |
+
epochs:
|
| 55 |
+
|
| 56 |
+
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
|
| 57 |
+
max_tokens: 3000000000000
|
| 58 |
+
|
| 59 |
+
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
|
| 60 |
+
max_steps:
|
| 61 |
+
|
| 62 |
+
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
| 63 |
+
max_seq_length: 2048
|
| 64 |
+
|
| 65 |
+
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
| 66 |
+
tie_embeddings:
|
| 67 |
+
|
| 68 |
+
# (type: Optional[float], default: 1.0)
|
| 69 |
+
max_norm: 1.0
|
| 70 |
+
|
| 71 |
+
# (type: float, default: 4e-05)
|
| 72 |
+
min_lr: 4.0e-05
|
| 73 |
+
|
| 74 |
+
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
|
| 75 |
+
eval:
|
| 76 |
+
|
| 77 |
+
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
|
| 78 |
+
interval: 1000
|
| 79 |
+
|
| 80 |
+
# Number of tokens to generate (type: Optional[int], default: null)
|
| 81 |
+
max_new_tokens:
|
| 82 |
+
|
| 83 |
+
# Number of iterations (type: int, default: 100)
|
| 84 |
+
max_iters: 100
|
| 85 |
+
|
| 86 |
+
# Whether to evaluate on the validation set at the beginning of the training
|
| 87 |
+
initial_validation: false
|
| 88 |
+
|
| 89 |
+
# Optimizer-related arguments
|
| 90 |
+
optimizer:
|
| 91 |
+
|
| 92 |
+
class_path: torch.optim.AdamW
|
| 93 |
+
|
| 94 |
+
init_args:
|
| 95 |
+
|
| 96 |
+
# (type: float, default: 0.001)
|
| 97 |
+
lr: 4e-4
|
| 98 |
+
|
| 99 |
+
# (type: float, default: 0.01)
|
| 100 |
+
weight_decay: 0.1
|
| 101 |
+
|
| 102 |
+
# (type: tuple, default: (0.9,0.999))
|
| 103 |
+
betas:
|
| 104 |
+
- 0.9
|
| 105 |
+
- 0.95
|
| 106 |
+
|
| 107 |
+
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
| 108 |
+
devices: auto
|
| 109 |
+
|
| 110 |
+
# How many nodes to use. (type: int, default: 1)
|
| 111 |
+
num_nodes: 1
|
| 112 |
+
|
| 113 |
+
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
|
| 114 |
+
# module require this. (type: Optional[Path], default: null)
|
| 115 |
+
tokenizer_dir: checkpoints/meta-llama/Llama-3.2-1B
|
| 116 |
+
|
| 117 |
+
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
|
| 118 |
+
logger_name: wandb
|
| 119 |
+
|
| 120 |
+
# The random seed to use for reproducibility. (type: int, default: 42)
|
| 121 |
+
seed: 42
|