File size: 16,389 Bytes
ccd394b
 
 
 
 
 
 
508a472
ccd394b
508a472
ccd394b
508a472
 
ccd394b
508a472
ccd394b
508a472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd394b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
pipeline_tag: text-generation
license: apache-2.0
language:
- zh
---

# Model Card for Breeze-7B-Instruct-64k-v0.1

Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.

[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) is the base model for the Breeze-7B series. 
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.

[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.

[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) is a slightly modified version of 
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.

The current release version of Breeze-7B is v0.1.

Practicality-wise:
- Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.


Performance-wise:
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]


*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*

## Features

- Breeze-7B-Base-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
  - 8k-token context length
- Breeze-7B-Instruct-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese 
  - 8k-token context length
  - Multi-turn dialogue (without special handling for harmfulness)
- Breeze-7B-Instruct-64k-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
  - 64k-token context length
  - Multi-turn dialogue (without special handling for harmfulness)

## Model Details

- Breeze-7B-Base-v0.1
  - Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-v0.1
  - Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-64k-v0.1
  - Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)

## Base Model Performance

**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. 


| Models                                       |        |↑ TMMLU+ (ACC) | DRCD (EM)   | Table (ACC) | MMLU (ACC) |
|----------------------------------------------|--------|--------------|-------------|-------------|------------|
|                                              |        |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
|                                              |        | 5 shot       | 3 shot      | 5 shot      | 5 shot     |
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B    | 63.10        | 84.57       | 49.31  | 77.42      |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B    | 51.30        | 16.95 *     | 50.69  | 68.83      |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B     | 49.63        | 76.61       | 34.72  | 65.35      |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B     | 42.84        | 0.0 *       | 39.58  | 61.00      |
| [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)       | 7B     | 40.35        | 81.13        | 28.47  | 61.63      |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B     | 36.93        | 79.27        | 27.78 | 64.89      |


\* Few-shot learning cannot effectively guide the model to generate the proper answer.


## Chat Model Performance

**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 **MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. 
 We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.


| Models                                                                                                  |        |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM)   | Table (ACC) | MT-Bench (Score) | MMLU (ACC)  | MMLU (ACC)  | 
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------|
|                                                                                                         |        |TC, Chat            |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat          |EN, Knowledge|EN, Knowledge|
|                                                                                                         |        |0 shot              | 0 shot       | 5 shot       | 3 shot      | 0 shot      |0 shot            |  0 shot     | 5 shot      | 
| [gpt-3.5-turbo](https://openai.com)                                                                     |        |7.1                 | 41.76        |              |             | 40.27       |7.9               |  70.00      |             |    
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat)                                                 | 34B    |6.9                 | 54.87        |              |             | 36.81       |7.6               |   71.04     |             |    
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat)                                              | 14B    |6.4                 | 48.41        |              |             | 41.67       |7.2               |    64.91    |             |    
| [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)         | 7B     |5.7                 | 41.61        |              |             | 45.83       |7.1               |    63.26    |             |    
| [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B     |5.5                 | 40.99        |              |             | 36.11       |7.1               |    63.68    |             |    
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)                                                | 7B     |5.4                 | 40.02        |              |             | 33.33       |6.2               |    55.94    |             |    
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)                                                   | 6B     |5.0                 | 44.79        |              |             | 25.69       |6.0               |    59.45    |             |    
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat)                  | 13B    |5.0                 | 29.47        |              |             | 23.61       |-*                |    50.50    |             |     
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat)                    | 7B     |4.2                 | 28.08        |              |             | 31.25       | -*               |    42.72    |             |    

\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.


| Details on MT-Bench-tw (0 shot):<br/>Models         | STEM    |Extraction|Reasoning| Math   | Coding  | Roleplay| Writing |Humanities|↑ AVG   |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| gpt-3.5-turbo                                       |  7.8    |  6.1    |   5.1   |   6.4   |  6.2    |   8.7   |   7.4   |   9.3   |   7.1   |
| Yi-34B-Chat                                         |  9.0    |  4.8    |   5.7   |   4.0   |  4.7    |   8.5   |   8.7   |   9.8   |   6.9   |
| Qwen-14B-Chat                                       |  7.6    |  5.7    |   4.5   |   4.2   |  5.3    |   7.5   |   7.3   |   9.1   |   6.4   |
| **Breeze-7B-Instruct-v0.1**                         |  6.5    |  5.6    |   3.9   |   3.6   |  4.3    |   6.9   |   5.7   |   9.3   |   5.7   |
| **Breeze-7B-Instruct-64k-v0.1**                     |  6.1    |  5.3    |   3.7   |   2.9   |  4.2    |   7.0   |   6.7   |   8.3   |   5.5   |
| Qwen-7B-Chat                                        |  6.6    |  4.5    |   4.8   |   2.9   |  3.6    |   6.2   |   6.8   |   8.2   |   5.4   |
| Yi-6B-Chat                                          |  7.3    |  2.7    |   3.1   |   3.3   |  2.3    |   7.2   |   5.2   |   8.8   |   5.0   |
| Taiwan-LLM-13B-v2.0-chat                            |  6.1    |  3.4    |   4.1   |   2.3   |  3.1    |   7.4   |   6.6   |   6.8   |   5.0   |
| Taiwan-LLM-7B-v2.1-chat                             |  5.2    |  2.6    |   2.3   |   1.2   |  3.4    |   6.6   |   5.7   |   6.8   |   4.2   |


| Details on TMMLU+ (0 shot):<br/>Model               | STEM         | Social Science | Humanities | Other      | ↑ AVG   |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
| Yi-34B-Chat                                         | 47.65        | 64.25          | 52.73      | 54.91      | 54.87   |
| Qwen-14B-Chat                                       | 43.83        | 55.00          | 48.55      | 46.22      | 48.41   |
| Yi-6B-Chat                                          | 37.80        | 51.74          | 45.36      | 44.25      | 44.79   |
| gpt-3.5-turbo                                       | 41.56        | 46.72          | 36.73      | 42.03      | 41.76   |
| **Breeze-7B-Instruct-v0.1**                         | 37.41        | 46.81          | 42.06      | 40.16      | 41.61   |
| **Breeze-7B-Instruct-64k-v0.1**                     | 37.88        | 46.35          | 40.31      | 39.40      | 40.99   |
| Qwen-7B-Chat                                        | 35.44        | 46.22          | 38.35      | 40.06      | 40.02   |
| Taiwan-LLM-13B-v2.0-chat                            | 27.74        | 33.69          | 27.03      | 29.43      | 29.47   |
| Taiwan-LLM-7B-v2.1-chat                             | 25.58        | 31.76          | 27.36      | 27.61      | 28.08   |



## Inference Performance
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).

| Models                                                             | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|--------------------------------------------------------------------|-------------------|--------------------------|
| Yi-6B-Chat                                                         |   10.62  |   5.2k                |
| **Breeze-7B-Instruct-v0.1**                                        |  10.74  |    11.1k                 |
| **Breeze-7B-Instruct-64k-v0.1**                                    | 10.74       |  88.8k            |
| Qwen-7B-Chat                                                       |   10.86         |    9.8k                  |
| Qwen-14B-Chat                                                      |   18.89  |    9.8k                  |
| Mistral-7B-v0.1-Instruct                                           |  20.48   |    5.1k                 |
| Taiwan-LLM-7B-v2.1-chat                                            |   26.26          |    2.2k                  |
| Taiwan-LLM-13B-v2.0-chat                                           |   36.80          |    2.2k                  |
| Yi-34B-Chat                                                        |  43.71   |    4.5k                  |

## Long-context Performance

TBD


## Use in Transformers

First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
    model="MediaTek-Research/Breeze-7B-Instruct-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    use_flash_attn_2=True, # optional
    trust_remote_code=True, # MUST
)
```

The structure of the query is 
```txt
<s>SYS_PROMPT   [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST] 
```
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user.

The suggested default `SYS_PROMPT` is 
```txt
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.
```

We also integrate `chat_template` into [tokenizer_config.json](tokenizer_config.json), so you can `apply_chat_template` to get the prompt.

```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-64k-v0.1")
>>> chat = [
...   {"role": "user", "content": "Hello, how are you?"},
...   {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
...   {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.   [INST] Hello, how are you? [/INST] I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST] "
```

## Citation

```
@article{breeze7b2024,
  title={},
  author={},
  journal={arXiv},
  year={2024}
}
```