Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -1,32 +1,98 @@
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
-
|
5 |
-
This
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
*
|
16 |
-
*
|
17 |
-
*
|
18 |
-
*
|
19 |
-
*
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
+
### Model Overview
|
5 |
+
This class represents the CSPDarkNet architecture.
|
6 |
+
|
7 |
+
**Reference**
|
8 |
+
|
9 |
+
- [CSPNet Paper](https://arxiv.org/abs/1911.11929)
|
10 |
+
|
11 |
+
For transfer learning use cases, make sure to read the
|
12 |
+
[guide to transfer learning & fine-tuning](https://keras.io/guides/transfer_learning/).
|
13 |
+
|
14 |
+
## Links
|
15 |
+
* [CSPNet Quickstart Notebook](https://www.kaggle.com/code/prasadsachin/cspnet-quickstart-kerashub)
|
16 |
+
* [CSPDarkNet API Documentation](https://keras.io/keras_hub/api/models/cspnet/)
|
17 |
+
* [CSPDarkNet Model Card](https://huggingface.co/timm/cspdarknet53.ra_in1k)
|
18 |
+
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
|
19 |
+
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
|
20 |
+
|
21 |
+
## Installation
|
22 |
+
|
23 |
+
Keras and KerasHub can be installed with:
|
24 |
+
|
25 |
+
```
|
26 |
+
pip install -U -q keras-hub
|
27 |
+
pip install -U -q keras
|
28 |
+
```
|
29 |
+
|
30 |
+
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
|
31 |
+
|
32 |
+
## Presets
|
33 |
+
|
34 |
+
The following model checkpoints are provided by the Keras team. Weights have been ported from: https://huggingface.co/timm. Full code examples for each are available below.
|
35 |
+
|
36 |
+
| Preset name | Parameters | Description |
|
37 |
+
|-----------------------|------------|---------------|
|
38 |
+
| `csp_darknet_53_ra_imagenet` | 27642184 | A CSP-DarkNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.|
|
39 |
+
| `csp_resnext_50_ra_imagenet` | 20569896 | A CSP-ResNeXt (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.|
|
40 |
+
| `csp_resnet_50_ra_imagenet` | 21616168 | A CSP-ResNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.|
|
41 |
+
| `darknet_53_imagenet` | 41609928 | A DarkNet image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.|
|
42 |
+
|
43 |
+
## Example Usage
|
44 |
+
```python
|
45 |
+
input_data = np.ones(shape=(8, 224, 224, 3))
|
46 |
+
|
47 |
+
# Pretrained backbone
|
48 |
+
model = keras_hub.models.CSPNetBackbone.from_preset("csp_resnext_50_ra_imagenet")
|
49 |
+
model(input_data)
|
50 |
+
|
51 |
+
# Randomly initialized backbone with a custom config
|
52 |
+
model = keras_hub.models.CSPNetBackbone(
|
53 |
+
stem_filters=32,
|
54 |
+
stem_kernel_size=3,
|
55 |
+
stem_strides=1,
|
56 |
+
stackwise_depth=[1, 2, 4],
|
57 |
+
stackwise_strides=[1, 2, 2],
|
58 |
+
stackwise_num_filters=[32, 64, 128],
|
59 |
+
block_type="dark",
|
60 |
+
)
|
61 |
+
|
62 |
+
model(input_data)
|
63 |
+
|
64 |
+
#Use cspnet for image classification task
|
65 |
+
model = keras_hub.models.ImageClassifier.from_preset("csp_resnext_50_ra_imagenet")
|
66 |
+
|
67 |
+
#Use Timm presets directly from HuggingFace
|
68 |
+
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k')
|
69 |
+
```
|
70 |
+
|
71 |
+
## Example Usage with Hugging Face URI
|
72 |
+
|
73 |
+
```python
|
74 |
+
input_data = np.ones(shape=(8, 224, 224, 3))
|
75 |
+
|
76 |
+
# Pretrained backbone
|
77 |
+
model = keras_hub.models.CSPNetBackbone.from_preset("hf://keras/csp_resnext_50_ra_imagenet")
|
78 |
+
model(input_data)
|
79 |
+
|
80 |
+
# Randomly initialized backbone with a custom config
|
81 |
+
model = keras_hub.models.CSPNetBackbone(
|
82 |
+
stem_filters=32,
|
83 |
+
stem_kernel_size=3,
|
84 |
+
stem_strides=1,
|
85 |
+
stackwise_depth=[1, 2, 4],
|
86 |
+
stackwise_strides=[1, 2, 2],
|
87 |
+
stackwise_num_filters=[32, 64, 128],
|
88 |
+
block_type="dark",
|
89 |
+
)
|
90 |
+
|
91 |
+
model(input_data)
|
92 |
+
|
93 |
+
#Use cspnet for image classification task
|
94 |
+
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/csp_resnext_50_ra_imagenet")
|
95 |
+
|
96 |
+
#Use Timm presets directly from HuggingFace
|
97 |
+
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k')
|
98 |
+
```
|