Divyasreepat commited on
Commit
b37d635
·
verified ·
1 Parent(s): 7f9fd32

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md CHANGED
@@ -7,5 +7,99 @@ tags:
7
  pipeline_tag: image-classification
8
  ---
9
  ### Model Overview
 
10
 
 
 
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pipeline_tag: image-classification
8
  ---
9
  ### Model Overview
10
+ # Model Summary
11
 
12
+ Instantiates the ResNet architecture amended by “bag of tricks” modifications.
13
+ ## Reference
14
+ [Bag of Tricks for Image Classification with Convolutional Neural Networks](https://arxiv.org/abs/1812.01187)
15
 
16
+ ResNetVd introduces two key modifications to the standard ResNet. First, the initial convolutional layer is replaced by a series of three successive convolutional layers. Second, shortcut connections use an additional pooling operation rather than performing downsampling within the convolutional layers themselves.
17
+ ## Links
18
+
19
+ * [ResNetVD Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/resnetvd-quickstart-notebook)
20
+ * [ResNet and ResNetVD series Doc](https://paddleclas.readthedocs.io/en/latest/models/ResNet_and_vd_en.html)
21
+ * [ResNetVD Model Card](https://arxiv.org/abs/1812.01187)
22
+ * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
23
+ * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
24
+
25
+ ## Installation
26
+
27
+ Keras and KerasHub can be installed with:
28
+
29
+ ```
30
+ pip install -U -q keras-hub
31
+ pip install -U -q keras
32
+ ```
33
+
34
+ Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
35
+
36
+ ## Presets
37
+
38
+ The following model checkpoints are provided by the Keras team.Weights have been ported from: [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR). Full code examples for each are available below.
39
+
40
+
41
+ | Preset name | Parameters | Description |
42
+ |------------------------|------------|-------------------------------------------------------------------------------------------------|
43
+ | `resnet_vd_18_imagenet` | 11.72M | 18-layer ResNetVD model pre-trained on the ImageNet 1k dataset at a 224x224 resolution.|
44
+ | `resnet_vd_34_imagenet` | 21.84M | 34-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
45
+ | `resnet_vd_50_imagenet` | 25.63M | 50-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
46
+ | `resnet_vd_50_ssld_imagenet` | 25.63M | 50-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution with knowledge distillation. |
47
+ | `resnet_vd_50_ssld_v2_imagenet` | 25.63M | 50-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution with knowledge distillation and AutoAugment. |
48
+ | `resnet_vd_50_ssld_v2_fix_imagenet` | 25.63M | 50-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution with knowledge distillation, AutoAugment and additional fine-tuning of the classification head. |
49
+ | `resnet_vd_101_imagenet` | 44.67M | 101-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
50
+ | `resnet_vd_101_ssld_imagenet` | 44.67M | 101-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution with knowledge distillation. |
51
+ | `resnet_vd_152_imagenet` | 60.36M | 152-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
52
+ | `resnet_vd_200_imagenet` | 74.93M | 200-layer ResNet model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
53
+
54
+ ## Example Usage
55
+ ```python
56
+
57
+ from keras_hub.models import ResNetBackbone
58
+ import keras
59
+ import numpy as np
60
+
61
+ input_data = np.ones(shape=(8, 224, 224, 3))
62
+
63
+ # Pretrained backbone
64
+ model = ResNetBackbone.from_preset("resnet_vd_50_ssld_v2_imagenet")
65
+ output = model(input_data)
66
+
67
+ # Randomly initialized backbone with a custom config
68
+ model = ResNetBackbone(
69
+ input_conv_filters=[32, 32, 64],
70
+ input_conv_kernel_sizes=[3, 3, 3],
71
+ stackwise_num_filters=[64, 128, 256, 512],
72
+ stackwise_num_blocks=[3, 4, 5, 6],
73
+ stackwise_num_strides=[1, 2, 2, 2],
74
+ block_type="bottleneck_block_vd",
75
+ )
76
+ output = model(input_data)
77
+
78
+ ```
79
+
80
+ ## Example Usage with Hugging Face URI
81
+
82
+ ```python
83
+
84
+ from keras_hub.models import ResNetBackbone
85
+ import keras
86
+ import numpy as np
87
+
88
+ input_data = np.ones(shape=(8, 224, 224, 3))
89
+
90
+ # Pretrained backbone
91
+ model = ResNetBackbone.from_preset("hf://keras/resnet_vd_50_ssld_v2_imagenet")
92
+ output = model(input_data)
93
+
94
+ # Randomly initialized backbone with a custom config
95
+ model = ResNetBackbone(
96
+ input_conv_filters=[32, 32, 64],
97
+ input_conv_kernel_sizes=[3, 3, 3],
98
+ stackwise_num_filters=[64, 128, 256, 512],
99
+ stackwise_num_blocks=[3, 4, 5, 6],
100
+ stackwise_num_strides=[1, 2, 2, 2],
101
+ block_type="bottleneck_block_vd",
102
+ )
103
+ output = model(input_data)
104
+
105
+ ```