--- library_name: keras-hub --- ### Model Overview SigLIP model pre-trained on WebLi at resolution 224x224. It was introduced in the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Zhai et al. and first released in this [repository](https://github.com/google-research/big_vision). SigLIP is [CLIP](https://huggingface.co/docs/transformers/model_doc/clip), a multimodal model, with a better loss function. The sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. This allows further scaling up the batch size, while also performing better at smaller batch sizes. A TLDR of SigLIP by one of the authors can be found [here](https://twitter.com/giffmana/status/1692641733459267713). Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). ## Links * [SigLIP Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/siglip-quickstart-notebook-with-hub) * [SigLIP API Documentation](https://keras.io/keras_hub/api/models/siglip/) * [SigLIP Model Card](https://arxiv.org/abs/2303.15343) * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) ## Installation Keras and KerasHub can be installed with: ``` pip install -U -q keras-hub pip install -U -q keras ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------| | siglip_base_patch16_224 | 203.16M | 200 million parameter, image size 224, pre-trained on WebLi. | siglip_base_patch16_256 | 203.20M | 200 million parameter, image size 256, pre-trained on WebLi. | siglip_base_patch16_384 | 203.45M | 200 million parameter, image size 384, pre-trained on WebLi. | siglip_base_patch16_512 | 203.79M | 200 million parameter, image size 512, pre-trained on WebLi. | siglip_base_patch16_256_multilingual |370.63M | 370 million parameter, image size 256, pre-trained on WebLi.| siglip2_base_patch16_224 | 375.19M | 375 million parameter, patch size 16, image size 224, pre-trained on WebLi.| siglip2_base_patch16_256| 375.23M | 375 million parameter, patch size 16, image size 256, pre-trained on WebLi.| siglip2_base_patch32_256| 376.86M | 376 million parameter, patch size 32, image size 256, pre-trained on WebLi.| siglip2_base_patch16_384 | 376.86M | 376 million parameter, patch size 16, image size 384, pre-trained on WebLi.| siglip_large_patch16_256 | 652.15M | 652 million parameter, image size 256, pre-trained on WebLi. | siglip_large_patch16_384 | 652.48M | 652 million parameter, image size 384, pre-trained on WebLi. | siglip_so400m_patch14_224 | 877.36M | 877 million parameter, image size 224, shape-optimized version, pre-trained on WebLi.| siglip_so400m_patch14_384 | 877.96M| 877 million parameter, image size 384, shape-optimized version, pre-trained on WebLi.| siglip2_large_patch16_256 |881.53M |881 million parameter, patch size 16, image size 256, pre-trained on WebLi.| siglip2_large_patch16_384 | 881.86M | 881 million parameter, patch size 16, image size 384, pre-trained on WebLi.| siglip2_large_patch16_512 | 882.31M |882 million parameter, patch size 16, image size 512, pre-trained on WebLi.| siglip_so400m_patch16_256_i18n | 1.13B |1.1 billion parameter, image size 256, shape-optimized version, pre-trained on WebLi.| siglip2_so400m_patch14_224 | 1.14B |1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi.| siglip2_so400m_patch16_256| 1.14B |1.1 billion parameter, patch size 16, image size 256, shape-optimized version, pre-trained on WebLi.| siglip2_so400m_patch14_384 | 1.14B |1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi.| siglip2_so400m_patch16_384 | 1.14B |1.1 billion parameter, patch size 16, image size 384, shape-optimized version, pre-trained on WebLi.| siglip2_so400m_patch16_512| 1.14B |1.1 billion parameter, patch size 16, image size 512, shape-optimized version, pre-trained on WebLi.| siglip2_giant_opt_patch16_256| 1.87B |1.8 billion parameter, patch size 16, image size 256, pre-trained on WebLi.| siglip2_giant_opt_patch16_384| 1.87B |1.8 billion parameter, patch size 16, image size 384, pre-trained on WebLi.| ## Example Usage ```Python import keras import numpy as np import matplotlib.pyplot as plt from keras_hub.models import SigLIPBackbone, SigLIPTokenizer from keras_hub.layers import SigLIPImageConverter # instantiate the model and preprocessing tools siglip = SigLIPBackbone.from_preset("siglip2_so400m_patch16_256") tokenizer = SigLIPTokenizer.from_preset("siglip2_so400m_patch16_256", sequence_length=64) image_converter = SigLIPImageConverter.from_preset("siglip2_so400m_patch16_256") # obtain tokens for some input text tokens = tokenizer.tokenize(["mountains", "cat on tortoise", "house"]) # preprocess image and text image = keras.utils.load_img("cat.jpg") image = image_converter(np.array([image]).astype(float)) # query the model for similarities siglip({ "images": image, "token_ids": tokens, }) ``` ## Example Usage with Hugging Face URI ```Python import keras import numpy as np import matplotlib.pyplot as plt from keras_hub.models import SigLIPBackbone, SigLIPTokenizer from keras_hub.layers import SigLIPImageConverter # instantiate the model and preprocessing tools siglip = SigLIPBackbone.from_preset("hf://keras/siglip2_so400m_patch16_256") tokenizer = SigLIPTokenizer.from_preset("hf://keras/siglip2_so400m_patch16_256", sequence_length=64) image_converter = SigLIPImageConverter.from_preset("hf://keras/siglip2_so400m_patch16_256") # obtain tokens for some input text tokens = tokenizer.tokenize(["mountains", "cat on tortoise", "house"]) # preprocess image and text image = keras.utils.load_img("cat.jpg") image = image_converter(np.array([image]).astype(float)) # query the model for similarities siglip({ "images": image, "token_ids": tokens, }) ```