--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-12b-it tags: - abliterated - uncensored --- ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python # pip install accelerate from transformers import AutoProcessor, Gemma3ForConditionalGeneration from PIL import Image import requests import torch model_id = "kerncore/Gemma-3-12b-ft"" model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto" ).eval() processor = AutoProcessor.from_pretrained(model_id) messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "text", "text": "Describe this image in detail."} ] } ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(model.device, dtype=torch.bfloat16) input_len = inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) # **Overall Impression:** The image is a close-up shot of a vibrant garden scene, # focusing on a cluster of pink cosmos flowers and a busy bumblebee. # It has a slightly soft, natural feel, likely captured in daylight.