|
|
|
|
|
|
|
|
|
|
|
|
|
#include <torch/nn/functional.h> |
|
#include <c10/cuda/CUDAGuard.h> |
|
#include <c10/cuda/CUDAStream.h> |
|
#include <ATen/cuda/CUDAGeneratorImpl.h> |
|
#include "src/philox_unpack.cuh" |
|
|
|
#include <cutlass/numeric_types.h> |
|
|
|
#include "src/namespace_config.h" |
|
#include "src/hardware_info.h" |
|
#include "src/flash.h" |
|
#include "src/static_switch.h" |
|
|
|
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA") |
|
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")") |
|
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") |
|
|
|
namespace FLASH_NAMESPACE { |
|
|
|
void set_params_fprop(Flash_fwd_params ¶ms, |
|
|
|
const size_t b, |
|
const size_t seqlen_q, |
|
const size_t seqlen_k, |
|
const size_t seqlen_q_rounded, |
|
const size_t seqlen_k_rounded, |
|
const size_t h, |
|
const size_t h_k, |
|
const size_t d, |
|
const size_t d_rounded, |
|
|
|
const at::Tensor q, |
|
const at::Tensor k, |
|
const at::Tensor v, |
|
at::Tensor out, |
|
void *cu_seqlens_q_d, |
|
void *cu_seqlens_k_d, |
|
void *seqused_k, |
|
void *p_d, |
|
void *softmax_lse_d, |
|
float p_dropout, |
|
float softmax_scale, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
bool seqlenq_ngroups_swapped=false, |
|
const bool unpadded_lse=false) { |
|
|
|
|
|
params = {}; |
|
|
|
params.is_bf16 = q.dtype() == torch::kBFloat16; |
|
|
|
|
|
params.q_ptr = q.data_ptr(); |
|
params.k_ptr = k.data_ptr(); |
|
params.v_ptr = v.data_ptr(); |
|
|
|
params.q_row_stride = q.stride(-3); |
|
params.k_row_stride = k.stride(-3); |
|
params.v_row_stride = v.stride(-3); |
|
params.q_head_stride = q.stride(-2); |
|
params.k_head_stride = k.stride(-2); |
|
params.v_head_stride = v.stride(-2); |
|
params.o_ptr = out.data_ptr(); |
|
params.o_row_stride = out.stride(-3); |
|
params.o_head_stride = out.stride(-2); |
|
|
|
if (cu_seqlens_q_d == nullptr) { |
|
params.q_batch_stride = q.stride(0); |
|
params.k_batch_stride = k.stride(0); |
|
params.v_batch_stride = v.stride(0); |
|
params.o_batch_stride = out.stride(0); |
|
if (seqlenq_ngroups_swapped) { |
|
params.q_batch_stride *= seqlen_q; |
|
params.o_batch_stride *= seqlen_q; |
|
} |
|
} |
|
|
|
params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d); |
|
params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d); |
|
params.seqused_k = static_cast<int *>(seqused_k); |
|
|
|
|
|
params.p_ptr = p_d; |
|
|
|
|
|
params.softmax_lse_ptr = softmax_lse_d; |
|
|
|
|
|
params.b = b; |
|
params.h = h; |
|
params.h_k = h_k; |
|
params.h_h_k_ratio = h / h_k; |
|
params.seqlen_q = seqlen_q; |
|
params.seqlen_k = seqlen_k; |
|
params.seqlen_q_rounded = seqlen_q_rounded; |
|
params.seqlen_k_rounded = seqlen_k_rounded; |
|
params.d = d; |
|
params.d_rounded = d_rounded; |
|
|
|
|
|
#ifdef FLASHATTENTION_DISABLE_SOFTCAP |
|
TORCH_CHECK(softcap <= 0.0, "This flash attention build does not support softcap."); |
|
#endif |
|
if (softcap > 0.0) { |
|
params.softcap = softmax_scale / softcap; |
|
params.scale_softmax = softcap; |
|
params.scale_softmax_log2 = softcap * M_LOG2E; |
|
} else{ |
|
|
|
params.softcap = 0.0; |
|
params.scale_softmax = softmax_scale; |
|
params.scale_softmax_log2 = softmax_scale * M_LOG2E; |
|
} |
|
|
|
|
|
params.p_dropout = 1.f - p_dropout; |
|
|
|
|
|
|
|
|
|
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0)); |
|
params.rp_dropout = 1.f / params.p_dropout; |
|
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax; |
|
TORCH_CHECK(p_dropout < 1.f); |
|
#ifdef FLASHATTENTION_DISABLE_DROPOUT |
|
TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout."); |
|
#endif |
|
|
|
|
|
|
|
params.is_causal = window_size_left < 0 && window_size_right == 0; |
|
|
|
if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; } |
|
if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; } |
|
params.window_size_left = window_size_left; |
|
params.window_size_right = window_size_right; |
|
|
|
#ifdef FLASHATTENTION_DISABLE_LOCAL |
|
TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0), |
|
"This flash attention build does not support local attention."); |
|
#endif |
|
|
|
params.is_seqlens_k_cumulative = true; |
|
|
|
#ifdef FLASHATTENTION_DISABLE_UNEVEN_K |
|
TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32."); |
|
#endif |
|
|
|
params.unpadded_lse = unpadded_lse; |
|
params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped; |
|
} |
|
|
|
void set_params_dgrad(Flash_bwd_params ¶ms, |
|
|
|
const size_t b, |
|
const size_t seqlen_q, |
|
const size_t seqlen_k, |
|
const size_t seqlen_q_rounded, |
|
const size_t seqlen_k_rounded, |
|
const size_t h, |
|
const size_t h_k, |
|
const size_t d, |
|
const size_t d_rounded, |
|
|
|
const at::Tensor q, |
|
const at::Tensor k, |
|
const at::Tensor v, |
|
const at::Tensor out, |
|
const at::Tensor dout, |
|
at::Tensor dq, |
|
at::Tensor dk, |
|
at::Tensor dv, |
|
void *cu_seqlens_q_d, |
|
void *cu_seqlens_k_d, |
|
void *dq_accum_d, |
|
void *dk_accum_d, |
|
void *dv_accum_d, |
|
void *softmax_lse_d, |
|
void *dsoftmax_sum_d, |
|
float p_dropout, |
|
float softmax_scale, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
bool deterministic, |
|
const bool unpadded_lse) { |
|
|
|
set_params_fprop(params, |
|
b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded, |
|
q, k, v, out, |
|
cu_seqlens_q_d, |
|
cu_seqlens_k_d, |
|
nullptr, |
|
nullptr, |
|
softmax_lse_d, |
|
p_dropout, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap, |
|
false, |
|
unpadded_lse); |
|
|
|
|
|
params.do_ptr = dout.data_ptr(); |
|
params.do_row_stride = dout.stride(-3); |
|
params.do_head_stride = dout.stride(-2); |
|
params.dq_ptr = dq.data_ptr(); |
|
params.dk_ptr = dk.data_ptr(); |
|
params.dv_ptr = dv.data_ptr(); |
|
params.dq_row_stride = dq.stride(-3); |
|
params.dk_row_stride = dk.stride(-3); |
|
params.dv_row_stride = dv.stride(-3); |
|
params.dq_head_stride = dq.stride(-2); |
|
params.dk_head_stride = dk.stride(-2); |
|
params.dv_head_stride = dv.stride(-2); |
|
|
|
if (cu_seqlens_q_d == nullptr) { |
|
params.do_batch_stride = dout.stride(0); |
|
params.dq_batch_stride = dq.stride(0); |
|
params.dk_batch_stride = dk.stride(0); |
|
params.dv_batch_stride = dv.stride(0); |
|
} |
|
|
|
params.dq_accum_ptr = dq_accum_d; |
|
params.dk_accum_ptr = dk_accum_d; |
|
params.dv_accum_ptr = dv_accum_d; |
|
|
|
|
|
params.dsoftmax_sum = dsoftmax_sum_d; |
|
|
|
params.deterministic = deterministic; |
|
} |
|
|
|
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) { |
|
FP16_SWITCH(!params.is_bf16, [&] { |
|
HEADDIM_SWITCH(params.d, [&] { |
|
BOOL_SWITCH(params.is_causal, Is_causal, [&] { |
|
if (params.num_splits <= 1 && !force_split_kernel) { |
|
run_mha_fwd_<elem_type, kHeadDim, Is_causal>(params, stream); |
|
} else { |
|
run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim, Is_causal>(params, stream); |
|
} |
|
}); |
|
}); |
|
}); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) { |
|
|
|
if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; } |
|
max_splits = std::min({max_splits, num_SMs, num_n_blocks}); |
|
float max_efficiency = 0.f; |
|
std::vector<float> efficiency; |
|
efficiency.reserve(max_splits); |
|
auto ceildiv = [](int a, int b) { return (a + b - 1) / b; }; |
|
|
|
|
|
|
|
|
|
auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) { |
|
return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1); |
|
}; |
|
for (int num_splits = 1; num_splits <= max_splits; num_splits++) { |
|
if (!is_split_eligible(num_splits)) { |
|
efficiency.push_back(0.f); |
|
} else { |
|
float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs; |
|
float eff = n_waves / ceil(n_waves); |
|
|
|
if (eff > max_efficiency) { max_efficiency = eff; } |
|
efficiency.push_back(eff); |
|
} |
|
} |
|
for (int num_splits = 1; num_splits <= max_splits; num_splits++) { |
|
if (!is_split_eligible(num_splits)) { continue; } |
|
if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) { |
|
|
|
return num_splits; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
std::tuple<at::Tensor, at::Tensor> set_params_splitkv(Flash_fwd_params ¶ms, const int batch_size, |
|
const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q, |
|
const int head_size_rounded, const float p_dropout, |
|
const int num_splits, const int num_sm, struct c10::TensorOptions opts) { |
|
|
|
|
|
const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64); |
|
const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n; |
|
|
|
|
|
const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64; |
|
params.num_splits = num_splits; |
|
at::Tensor softmax_lse_accum; |
|
at::Tensor out_accum; |
|
|
|
if (p_dropout == 0.0f) { |
|
if (num_splits < 1) { |
|
|
|
params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, num_sm * 2, num_n_blocks, 128); |
|
} |
|
if (params.num_splits > 1) { |
|
softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat)); |
|
out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat)); |
|
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr(); |
|
params.oaccum_ptr = out_accum.data_ptr(); |
|
} |
|
TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported"); |
|
} |
|
|
|
return std::make_tuple(softmax_lse_accum, out_accum); |
|
} |
|
|
|
void set_params_alibi(Flash_fwd_params ¶ms, std::optional<at::Tensor> &alibi_slopes_, int batch_size, int num_heads){ |
|
#ifdef FLASHATTENTION_DISABLE_ALIBI |
|
TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi."); |
|
params.alibi_slopes_ptr = nullptr; |
|
#else |
|
if (alibi_slopes_.has_value()) { |
|
auto alibi_slopes = alibi_slopes_.value(); |
|
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32"); |
|
CHECK_DEVICE(alibi_slopes); |
|
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension"); |
|
TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads})); |
|
params.alibi_slopes_ptr = alibi_slopes.data_ptr(); |
|
params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0; |
|
} else { |
|
params.alibi_slopes_ptr = nullptr; |
|
} |
|
#endif |
|
} |
|
|
|
std::vector<at::Tensor> |
|
mha_fwd(at::Tensor &q, |
|
const at::Tensor &k, |
|
const at::Tensor &v, |
|
std::optional<at::Tensor> &out_, |
|
std::optional<at::Tensor> &alibi_slopes_, |
|
const float p_dropout, |
|
const float softmax_scale, |
|
bool is_causal, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
const bool return_softmax, |
|
std::optional<at::Generator> gen_) { |
|
|
|
|
|
at::cuda::CUDAGuard device_guard{q.device()}; |
|
|
|
auto [cc_major, cc_minor] = get_compute_capability(get_current_device()); |
|
bool is_sm8x_min = cc_major >= 8; |
|
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer."); |
|
|
|
auto q_dtype = q.dtype(); |
|
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, |
|
"FlashAttention only support fp16 and bf16 data type"); |
|
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); |
|
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); |
|
|
|
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); |
|
|
|
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
|
|
const auto sizes = q.sizes(); |
|
|
|
const int batch_size = sizes[0]; |
|
int seqlen_q = sizes[1]; |
|
int num_heads = sizes[2]; |
|
const int head_size = sizes[3]; |
|
const int seqlen_k = k.size(1); |
|
const int num_heads_k = k.size(2); |
|
TORCH_CHECK(batch_size > 0, "batch size must be positive"); |
|
TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256"); |
|
TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8"); |
|
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); |
|
|
|
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } |
|
|
|
if (window_size_left >= seqlen_k) { window_size_left = -1; } |
|
if (window_size_right >= seqlen_k) { window_size_right = -1; } |
|
|
|
|
|
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } |
|
if (is_causal) { window_size_right = 0; } |
|
|
|
|
|
|
|
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value(); |
|
const int ngroups = num_heads / num_heads_k; |
|
if (seqlenq_ngroups_swapped) { |
|
q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2); |
|
seqlen_q = ngroups; |
|
num_heads = num_heads_k; |
|
} |
|
|
|
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); |
|
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); |
|
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); |
|
|
|
at::Tensor out; |
|
if (out_.has_value()) { |
|
out = out_.value(); |
|
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); |
|
CHECK_DEVICE(out); |
|
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); |
|
CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size); |
|
if (seqlenq_ngroups_swapped) { |
|
out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2); |
|
} |
|
} else { |
|
out = torch::empty_like(q); |
|
} |
|
|
|
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; |
|
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; |
|
const int seqlen_q_rounded = round_multiple(seqlen_q, 128); |
|
const int seqlen_k_rounded = round_multiple(seqlen_k, 128); |
|
|
|
auto opts = q.options(); |
|
|
|
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); |
|
at::Tensor p; |
|
|
|
if (return_softmax) { |
|
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); |
|
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); |
|
} |
|
else { |
|
p = torch::empty({ 0 }, opts); |
|
} |
|
|
|
Flash_fwd_params params; |
|
set_params_fprop(params, |
|
batch_size, |
|
seqlen_q, seqlen_k, |
|
seqlen_q_rounded, seqlen_k_rounded, |
|
num_heads, num_heads_k, |
|
head_size, head_size_rounded, |
|
q, k, v, out, |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
return_softmax ? p.data_ptr() : nullptr, |
|
softmax_lse.data_ptr(), |
|
p_dropout, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap |
|
); |
|
|
|
|
|
at::Tensor softmax_lse_accum, out_accum; |
|
std::tie(softmax_lse_accum, out_accum) = set_params_splitkv( |
|
params, batch_size, num_heads, head_size, seqlen_k, seqlen_q, |
|
head_size_rounded, p_dropout, 0, get_num_sm(get_current_device()), opts); |
|
|
|
|
|
|
|
|
|
int64_t counter_offset = params.b * params.h * 32; |
|
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); |
|
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); |
|
|
|
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr()); |
|
|
|
if (p_dropout > 0.0) { |
|
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>( |
|
gen_, at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
std::lock_guard<std::mutex> lock(gen->mutex_); |
|
params.philox_args = gen->philox_cuda_state(counter_offset); |
|
} |
|
|
|
set_params_alibi(params, alibi_slopes_, batch_size, num_heads); |
|
|
|
if (seqlen_k > 0) { |
|
auto stream = at::cuda::getCurrentCUDAStream().stream(); |
|
run_mha_fwd(params, stream); |
|
} else { |
|
|
|
out.zero_(); |
|
softmax_lse.fill_(std::numeric_limits<float>::infinity()); |
|
} |
|
|
|
if (seqlenq_ngroups_swapped) { |
|
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size}); |
|
q = q.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size}); |
|
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1}); |
|
} |
|
return {out, softmax_lse, p, rng_state}; |
|
} |
|
|
|
std::vector<at::Tensor> |
|
mha_varlen_fwd(at::Tensor &q, |
|
const at::Tensor &k, |
|
const at::Tensor &v, |
|
std::optional<at::Tensor> &out_, |
|
const at::Tensor &cu_seqlens_q, |
|
const at::Tensor &cu_seqlens_k, |
|
std::optional<at::Tensor> &seqused_k, |
|
std::optional<const at::Tensor> &leftpad_k_, |
|
std::optional<at::Tensor> &block_table_, |
|
std::optional<at::Tensor> &alibi_slopes_, |
|
int max_seqlen_q, |
|
const int max_seqlen_k, |
|
const float p_dropout, |
|
const float softmax_scale, |
|
const bool zero_tensors, |
|
bool is_causal, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
const bool return_softmax, |
|
std::optional<at::Generator> gen_) { |
|
|
|
|
|
at::cuda::CUDAGuard device_guard{q.device()}; |
|
|
|
auto [cc_major, cc_minor] = get_compute_capability(get_current_device()); |
|
bool is_sm8x_min = cc_major >= 8; |
|
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer."); |
|
|
|
auto q_dtype = q.dtype(); |
|
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, |
|
"FlashAttention only support fp16 and bf16 data type"); |
|
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); |
|
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); |
|
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); |
|
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); |
|
|
|
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); |
|
CHECK_DEVICE(cu_seqlens_q); |
|
CHECK_DEVICE(cu_seqlens_k); |
|
|
|
at::Tensor block_table; |
|
const bool paged_KV = block_table_.has_value(); |
|
if (paged_KV) { |
|
block_table = block_table_.value(); |
|
CHECK_DEVICE(block_table); |
|
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32"); |
|
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension"); |
|
} |
|
|
|
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
CHECK_CONTIGUOUS(cu_seqlens_q); |
|
CHECK_CONTIGUOUS(cu_seqlens_k); |
|
|
|
const auto sizes = q.sizes(); |
|
|
|
const int batch_size = cu_seqlens_q.numel() - 1; |
|
int num_heads = sizes[1]; |
|
const int head_size = sizes[2]; |
|
const int num_heads_k = paged_KV ? k.size(2) : k.size(1); |
|
|
|
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } |
|
|
|
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1); |
|
const int num_blocks = !paged_KV ? 0 : k.size(0); |
|
const int page_block_size = !paged_KV ? 1 : k.size(1); |
|
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256"); |
|
|
|
if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } |
|
if (is_causal) { window_size_right = 0; } |
|
|
|
void *cu_seqlens_q_d = cu_seqlens_q.data_ptr(); |
|
|
|
|
|
|
|
const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value(); |
|
const int ngroups = num_heads / num_heads_k; |
|
if (seqlenq_ngroups_swapped) { |
|
q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size}); |
|
max_seqlen_q = ngroups; |
|
num_heads = num_heads_k; |
|
cu_seqlens_q_d = nullptr; |
|
} |
|
|
|
const int total_q = q.sizes()[0]; |
|
|
|
TORCH_CHECK(batch_size > 0, "batch size must be positive"); |
|
TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256"); |
|
TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8"); |
|
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); |
|
|
|
if (window_size_left >= max_seqlen_k) { window_size_left = -1; } |
|
if (window_size_right >= max_seqlen_k) { window_size_right = -1; } |
|
|
|
CHECK_SHAPE(q, total_q, num_heads, head_size); |
|
if (!paged_KV) { |
|
const int total_k = k.size(0); |
|
CHECK_SHAPE(k, total_k, num_heads_k, head_size); |
|
CHECK_SHAPE(v, total_k, num_heads_k, head_size); |
|
} else { |
|
CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size); |
|
CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size); |
|
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq); |
|
} |
|
|
|
CHECK_SHAPE(cu_seqlens_q, batch_size + 1); |
|
CHECK_SHAPE(cu_seqlens_k, batch_size + 1); |
|
if (seqused_k.has_value()){ |
|
auto seqused_k_ = seqused_k.value(); |
|
TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32"); |
|
TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device"); |
|
TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous"); |
|
CHECK_SHAPE(seqused_k_, batch_size); |
|
} |
|
|
|
at::Tensor out; |
|
if (out_.has_value()) { |
|
out = out_.value(); |
|
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); |
|
CHECK_DEVICE(out); |
|
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); |
|
CHECK_SHAPE(out, sizes[0], sizes[1], head_size); |
|
if (seqlenq_ngroups_swapped) { |
|
out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size}); |
|
} |
|
} else { |
|
out = torch::empty_like(q); |
|
} |
|
|
|
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; |
|
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; |
|
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); |
|
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); |
|
|
|
auto opts = q.options(); |
|
auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat)); |
|
at::Tensor p; |
|
|
|
if (return_softmax) { |
|
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); |
|
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); |
|
} |
|
else { |
|
p = torch::empty({ 0 }, opts); |
|
} |
|
|
|
if (zero_tensors) { |
|
out.zero_(); |
|
softmax_lse.fill_(-std::numeric_limits<float>::infinity()); |
|
if (return_softmax) {p.zero_();} |
|
} |
|
|
|
Flash_fwd_params params; |
|
set_params_fprop(params, |
|
batch_size, |
|
max_seqlen_q, max_seqlen_k, |
|
seqlen_q_rounded, seqlen_k_rounded, |
|
num_heads, num_heads_k, |
|
head_size, head_size_rounded, |
|
q, k, v, out, |
|
cu_seqlens_q_d, |
|
cu_seqlens_k.data_ptr(), |
|
seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr, |
|
return_softmax ? p.data_ptr() : nullptr, |
|
softmax_lse.data_ptr(), |
|
p_dropout, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap, |
|
seqlenq_ngroups_swapped, |
|
true); |
|
params.total_q = total_q; |
|
|
|
if (paged_KV) { |
|
params.block_table = block_table.data_ptr<int>(); |
|
params.block_table_batch_stride = block_table.stride(0); |
|
params.k_batch_stride = k.stride(0); |
|
params.v_batch_stride = v.stride(0); |
|
} |
|
params.page_block_size = page_block_size; |
|
|
|
at::Tensor softmax_lse_accum, out_accum; |
|
if (seqlenq_ngroups_swapped) { |
|
|
|
std::tie(softmax_lse_accum, out_accum) = |
|
set_params_splitkv(params, batch_size, num_heads, head_size, |
|
max_seqlen_k, max_seqlen_q, head_size_rounded, |
|
p_dropout, 0, get_num_sm(get_current_device()), opts); |
|
} |
|
|
|
if (leftpad_k_.has_value()) { |
|
auto leftpad_k = leftpad_k_.value(); |
|
TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet"); |
|
TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32"); |
|
CHECK_DEVICE(leftpad_k); |
|
CHECK_CONTIGUOUS(leftpad_k); |
|
CHECK_SHAPE(leftpad_k, batch_size); |
|
params.leftpad_k = static_cast<int *>(leftpad_k.data_ptr()); |
|
} |
|
|
|
|
|
|
|
|
|
int64_t counter_offset = params.b * params.h * 32; |
|
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); |
|
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); |
|
|
|
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr()); |
|
|
|
if (p_dropout > 0.0) { |
|
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>( |
|
gen_, at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
std::lock_guard<std::mutex> lock(gen->mutex_); |
|
params.philox_args = gen->philox_cuda_state(counter_offset); |
|
} |
|
|
|
set_params_alibi(params, alibi_slopes_, batch_size, num_heads); |
|
|
|
if (max_seqlen_k > 0) { |
|
auto stream = at::cuda::getCurrentCUDAStream().stream(); |
|
run_mha_fwd(params, stream, paged_KV); |
|
} else { |
|
|
|
out.zero_(); |
|
softmax_lse.fill_(std::numeric_limits<float>::infinity()); |
|
} |
|
|
|
if (seqlenq_ngroups_swapped) { |
|
int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size}; |
|
int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size}; |
|
out = out.reshape(size_before).transpose(1, 2).reshape(size_after); |
|
q = q.reshape(size_before).transpose(1, 2).reshape(size_after); |
|
softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size}); |
|
} |
|
|
|
return {out, softmax_lse, p, rng_state}; |
|
} |
|
|
|
void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) { |
|
FP16_SWITCH(!params.is_bf16, [&] { |
|
HEADDIM_SWITCH(params.d, [&] { |
|
BOOL_SWITCH(params.is_causal, Is_causal, [&] { |
|
run_mha_bwd_<elem_type, kHeadDim, Is_causal>(params, stream); |
|
}); |
|
}); |
|
}); |
|
} |
|
|
|
std::vector<at::Tensor> |
|
mha_bwd(const at::Tensor &dout, |
|
const at::Tensor &q, |
|
const at::Tensor &k, |
|
const at::Tensor &v, |
|
const at::Tensor &out, |
|
const at::Tensor &softmax_lse, |
|
std::optional<at::Tensor> &dq_, |
|
std::optional<at::Tensor> &dk_, |
|
std::optional<at::Tensor> &dv_, |
|
std::optional<at::Tensor> &alibi_slopes_, |
|
const float p_dropout, |
|
const float softmax_scale, |
|
const bool is_causal, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
const bool deterministic, |
|
std::optional<at::Generator> gen_, |
|
std::optional<at::Tensor> &rng_state) { |
|
|
|
#ifdef FLASHATTENTION_DISABLE_BACKWARD |
|
TORCH_CHECK(false, "This flash attention build does not support backward."); |
|
#endif |
|
if (is_causal) { window_size_right = 0; } |
|
|
|
|
|
at::cuda::CUDAGuard device_guard{q.device()}; |
|
|
|
auto [cc_major, cc_minor] = get_compute_capability(get_current_device()); |
|
bool is_sm8x_min = cc_major >= 8; |
|
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer."); |
|
|
|
bool is_dropout = p_dropout > 0.0; |
|
auto stream = at::cuda::getCurrentCUDAStream().stream(); |
|
|
|
auto q_dtype = q.dtype(); |
|
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, |
|
"FlashAttention only support fp16 and bf16 data type"); |
|
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); |
|
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); |
|
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); |
|
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); |
|
|
|
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); |
|
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); |
|
|
|
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); |
|
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); |
|
|
|
const auto sizes = q.sizes(); |
|
|
|
const int batch_size = sizes[0]; |
|
const int seqlen_q = sizes[1]; |
|
const int num_heads = sizes[2]; |
|
const int head_size = sizes[3]; |
|
const int seqlen_k = k.size(1); |
|
const int num_heads_k = k.size(2); |
|
TORCH_CHECK(batch_size > 0, "batch size must be positive"); |
|
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); |
|
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); |
|
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); |
|
|
|
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; |
|
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; |
|
const int seqlen_q_rounded = round_multiple(seqlen_q, 128); |
|
const int seqlen_k_rounded = round_multiple(seqlen_k, 128); |
|
|
|
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } |
|
|
|
if (window_size_left >= seqlen_k) { window_size_left = -1; } |
|
if (window_size_right >= seqlen_k) { window_size_right = -1; } |
|
|
|
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); |
|
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); |
|
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); |
|
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size); |
|
CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size); |
|
|
|
at::Tensor dq, dk, dv; |
|
if (dq_.has_value()) { |
|
dq = dq_.value(); |
|
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); |
|
CHECK_DEVICE(dq); |
|
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); |
|
CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size); |
|
} else { |
|
dq = torch::empty_like(q); |
|
} |
|
if (dk_.has_value()) { |
|
dk = dk_.value(); |
|
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); |
|
CHECK_DEVICE(dk); |
|
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); |
|
CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size); |
|
} else { |
|
dk = torch::empty_like(k); |
|
} |
|
if (dv_.has_value()) { |
|
dv = dv_.value(); |
|
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); |
|
CHECK_DEVICE(dv); |
|
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); |
|
CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size); |
|
} else { |
|
dv = torch::empty_like(v); |
|
} |
|
|
|
|
|
|
|
bool loop = true; |
|
|
|
auto opts = q.options(); |
|
auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat)); |
|
at::Tensor dq_accum; |
|
at::Tensor dk_accum, dv_accum; |
|
if (loop) { |
|
if (!deterministic) { |
|
dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); |
|
} else { |
|
const int nsplits = (get_num_sm(get_current_device()) + batch_size * num_heads - 1) / (batch_size * num_heads); |
|
dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); |
|
} |
|
|
|
|
|
} |
|
|
|
at::Tensor dk_expanded, dv_expanded; |
|
if (num_heads_k != num_heads) { |
|
dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); |
|
dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); |
|
} else { |
|
dk_expanded = dk; |
|
dv_expanded = dv; |
|
} |
|
|
|
Flash_bwd_params params; |
|
|
|
set_params_dgrad(params, |
|
batch_size, |
|
seqlen_q, seqlen_k, |
|
seqlen_q_rounded, seqlen_k_rounded, |
|
num_heads, num_heads_k, |
|
head_size, head_size_rounded, |
|
q, k, v, out, |
|
dout, dq, dk_expanded, dv_expanded, |
|
nullptr, |
|
nullptr, |
|
loop ? dq_accum.data_ptr() : nullptr, |
|
|
|
|
|
nullptr, |
|
nullptr, |
|
softmax_lse.data_ptr(), |
|
softmax_d.data_ptr(), |
|
p_dropout, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap, |
|
deterministic, |
|
false); |
|
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0); |
|
|
|
auto launch = &run_mha_bwd; |
|
|
|
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>( |
|
gen_, at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
|
|
int64_t counter_offset = params.b * params.h * 32; |
|
|
|
if ( rng_state.has_value() ) { |
|
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr()); |
|
} else if( is_dropout ) { |
|
|
|
std::lock_guard<std::mutex> lock(gen->mutex_); |
|
params.philox_args = gen->philox_cuda_state(counter_offset); |
|
auto seeds = at::cuda::philox::unpack(params.philox_args); |
|
params.rng_state[0] = std::get<0>(seeds); |
|
params.rng_state[1] = std::get<1>(seeds); |
|
} |
|
|
|
set_params_alibi(params, alibi_slopes_, batch_size, num_heads); |
|
|
|
if (seqlen_q > 0) { |
|
launch(params, stream); |
|
} else { |
|
|
|
dk_expanded.zero_(); |
|
dv_expanded.zero_(); |
|
softmax_d.zero_(); |
|
} |
|
|
|
|
|
if (num_heads_k != num_heads) { |
|
at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); |
|
at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); |
|
} |
|
|
|
return { dq, dk, dv, softmax_d }; |
|
} |
|
|
|
std::vector<at::Tensor> |
|
mha_varlen_bwd(const at::Tensor &dout, |
|
const at::Tensor &q, |
|
const at::Tensor &k, |
|
const at::Tensor &v, |
|
const at::Tensor &out, |
|
const at::Tensor &softmax_lse, |
|
std::optional<at::Tensor> &dq_, |
|
std::optional<at::Tensor> &dk_, |
|
std::optional<at::Tensor> &dv_, |
|
const at::Tensor &cu_seqlens_q, |
|
const at::Tensor &cu_seqlens_k, |
|
std::optional<at::Tensor> &alibi_slopes_, |
|
const int max_seqlen_q, |
|
const int max_seqlen_k, |
|
const float p_dropout, |
|
const float softmax_scale, |
|
const bool zero_tensors, |
|
const bool is_causal, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
const bool deterministic, |
|
std::optional<at::Generator> gen_, |
|
std::optional<at::Tensor> &rng_state) { |
|
|
|
#ifdef FLASHATTENTION_DISABLE_BACKWARD |
|
TORCH_CHECK(false, "This flash attention build does not support backward."); |
|
#endif |
|
if (is_causal) { window_size_right = 0; } |
|
|
|
|
|
at::cuda::CUDAGuard device_guard{q.device()}; |
|
|
|
auto [cc_major, cc_minor] = get_compute_capability(get_current_device()); |
|
bool is_sm8x_min = cc_major >= 8; |
|
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer."); |
|
|
|
bool is_dropout = p_dropout > 0.0; |
|
auto stream = at::cuda::getCurrentCUDAStream().stream(); |
|
|
|
auto q_dtype = q.dtype(); |
|
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, |
|
"FlashAttention only support fp16 and bf16 data type"); |
|
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); |
|
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); |
|
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); |
|
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); |
|
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); |
|
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); |
|
|
|
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); |
|
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); |
|
CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); |
|
|
|
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); |
|
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); |
|
CHECK_CONTIGUOUS(cu_seqlens_q); |
|
CHECK_CONTIGUOUS(cu_seqlens_k); |
|
|
|
const auto sizes = q.sizes(); |
|
|
|
const int total_q = sizes[0]; |
|
const int batch_size = cu_seqlens_q.numel() - 1; |
|
const int num_heads = sizes[1]; |
|
const int head_size = sizes[2]; |
|
const int total_k = k.size(0); |
|
const int num_heads_k = k.size(1); |
|
TORCH_CHECK(batch_size > 0, "batch size must be positive"); |
|
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); |
|
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); |
|
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); |
|
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } |
|
|
|
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; |
|
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; |
|
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); |
|
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); |
|
|
|
if (window_size_left >= max_seqlen_k) { window_size_left = -1; } |
|
if (window_size_right >= max_seqlen_k) { window_size_right = -1; } |
|
|
|
CHECK_SHAPE(q, total_q, num_heads, head_size); |
|
CHECK_SHAPE(k, total_k, num_heads_k, head_size); |
|
CHECK_SHAPE(v, total_k, num_heads_k, head_size); |
|
CHECK_SHAPE(out, total_q, num_heads, head_size); |
|
CHECK_SHAPE(dout, total_q, num_heads, head_size); |
|
CHECK_SHAPE(cu_seqlens_q, batch_size + 1); |
|
CHECK_SHAPE(cu_seqlens_k, batch_size + 1); |
|
|
|
at::Tensor dq, dk, dv; |
|
if (dq_.has_value()) { |
|
dq = dq_.value(); |
|
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); |
|
CHECK_DEVICE(dq); |
|
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); |
|
CHECK_SHAPE(dq, total_q, num_heads, head_size); |
|
} else { |
|
dq = torch::empty_like(q); |
|
} |
|
if (dk_.has_value()) { |
|
dk = dk_.value(); |
|
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); |
|
CHECK_DEVICE(dk); |
|
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); |
|
CHECK_SHAPE(dk, total_k, num_heads_k, head_size); |
|
} else { |
|
dk = torch::empty_like(k); |
|
} |
|
if (dv_.has_value()) { |
|
dv = dv_.value(); |
|
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); |
|
CHECK_DEVICE(dv); |
|
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); |
|
CHECK_SHAPE(dv, total_k, num_heads_k, head_size); |
|
} else { |
|
dv = torch::empty_like(v); |
|
} |
|
|
|
|
|
|
|
bool loop = true; |
|
|
|
auto opts = q.options(); |
|
auto softmax_d = torch::empty({num_heads, total_q + 128 * batch_size}, opts.dtype(at::kFloat)); |
|
at::Tensor dq_accum; |
|
if (loop) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!deterministic) { |
|
dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); |
|
} else { |
|
const int nsplits = (get_num_sm(get_current_device()) + batch_size * num_heads - 1) / (batch_size * num_heads); |
|
dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); |
|
} |
|
} |
|
|
|
at::Tensor dk_expanded, dv_expanded; |
|
if (num_heads_k != num_heads) { |
|
dk_expanded = torch::empty({total_k, num_heads, head_size}, opts); |
|
dv_expanded = torch::empty({total_k, num_heads, head_size}, opts); |
|
} else { |
|
dk_expanded = dk; |
|
dv_expanded = dv; |
|
} |
|
|
|
if( zero_tensors ) { |
|
dq.zero_(); |
|
dk_expanded.zero_(); |
|
dv_expanded.zero_(); |
|
softmax_d.zero_(); |
|
} |
|
|
|
Flash_bwd_params params; |
|
|
|
set_params_dgrad(params, |
|
batch_size, |
|
max_seqlen_q, max_seqlen_k, |
|
seqlen_q_rounded, seqlen_k_rounded, |
|
num_heads, num_heads_k, |
|
head_size, head_size_rounded, |
|
q, k, v, out, |
|
dout, dq, dk_expanded, dv_expanded, |
|
cu_seqlens_q.data_ptr(), |
|
cu_seqlens_k.data_ptr(), |
|
loop ? dq_accum.data_ptr() : nullptr, |
|
nullptr, |
|
nullptr, |
|
softmax_lse.data_ptr(), |
|
softmax_d.data_ptr(), |
|
p_dropout, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap, |
|
deterministic, |
|
true); |
|
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0); |
|
params.total_q = total_q; |
|
|
|
auto launch = &run_mha_bwd; |
|
|
|
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>( |
|
gen_, at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
|
|
int64_t counter_offset = params.b * params.h * 32; |
|
|
|
if ( rng_state.has_value() ) { |
|
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr()); |
|
} else if( is_dropout ) { |
|
|
|
std::lock_guard<std::mutex> lock(gen->mutex_); |
|
params.philox_args = gen->philox_cuda_state(counter_offset); |
|
auto seeds = at::cuda::philox::unpack(params.philox_args); |
|
params.rng_state[0] = std::get<0>(seeds); |
|
params.rng_state[1] = std::get<1>(seeds); |
|
} |
|
|
|
set_params_alibi(params, alibi_slopes_, batch_size, num_heads); |
|
|
|
if (max_seqlen_q > 0) { |
|
launch(params, stream); |
|
} else { |
|
|
|
dk_expanded.zero_(); |
|
dv_expanded.zero_(); |
|
softmax_d.zero_(); |
|
} |
|
|
|
|
|
if (num_heads_k != num_heads) { |
|
at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); |
|
at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); |
|
} |
|
|
|
return { dq, dk, dv, softmax_d }; |
|
} |
|
|
|
std::vector<at::Tensor> |
|
mha_fwd_kvcache(at::Tensor &q, |
|
const at::Tensor &kcache, |
|
const at::Tensor &vcache, |
|
std::optional<const at::Tensor> &k_, |
|
std::optional<const at::Tensor> &v_, |
|
std::optional<const at::Tensor> &seqlens_k_, |
|
std::optional<const at::Tensor> &rotary_cos_, |
|
std::optional<const at::Tensor> &rotary_sin_, |
|
std::optional<const at::Tensor> &cache_batch_idx_, |
|
std::optional<const at::Tensor> &leftpad_k_, |
|
std::optional<at::Tensor> &block_table_, |
|
std::optional<at::Tensor> &alibi_slopes_, |
|
std::optional<at::Tensor> &out_, |
|
const float softmax_scale, |
|
bool is_causal, |
|
int window_size_left, |
|
int window_size_right, |
|
const float softcap, |
|
bool is_rotary_interleaved, |
|
int num_splits |
|
) { |
|
|
|
|
|
at::cuda::CUDAGuard device_guard{q.device()}; |
|
|
|
auto [cc_major, cc_minor] = get_compute_capability(get_current_device()); |
|
bool is_sm8x_min = cc_major >= 8; |
|
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer."); |
|
|
|
auto q_dtype = q.dtype(); |
|
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, |
|
"FlashAttention only support fp16 and bf16 data type"); |
|
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype"); |
|
TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype"); |
|
|
|
CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache); |
|
|
|
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); |
|
|
|
at::Tensor block_table; |
|
const bool paged_KV = block_table_.has_value(); |
|
if (paged_KV) { |
|
TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx"); |
|
block_table = block_table_.value(); |
|
CHECK_DEVICE(block_table); |
|
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32"); |
|
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension"); |
|
} |
|
|
|
const auto sizes = q.sizes(); |
|
|
|
const int batch_size = sizes[0]; |
|
int seqlen_q = sizes[1]; |
|
int num_heads = sizes[2]; |
|
const int head_size_og = sizes[3]; |
|
|
|
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1); |
|
const int num_blocks = !paged_KV ? 0 : kcache.size(0); |
|
const int page_block_size = !paged_KV ? 1 : kcache.size(1); |
|
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256"); |
|
const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size; |
|
const int num_heads_k = kcache.size(2); |
|
const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size; |
|
TORCH_CHECK(batch_size > 0, "batch size must be positive"); |
|
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256"); |
|
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); |
|
|
|
|
|
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } |
|
if (is_causal) { window_size_right = 0; } |
|
|
|
|
|
|
|
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value(); |
|
if (seqlenq_ngroups_swapped) { |
|
const int ngroups = num_heads / num_heads_k; |
|
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2); |
|
seqlen_q = ngroups; |
|
num_heads = num_heads_k; |
|
} |
|
|
|
if (window_size_left >= seqlen_k) { window_size_left = -1; } |
|
if (window_size_right >= seqlen_k) { window_size_right = -1; } |
|
|
|
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og); |
|
if (!paged_KV) { |
|
CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og); |
|
CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og); |
|
} else { |
|
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og); |
|
CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og); |
|
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq); |
|
} |
|
|
|
at::Tensor q_padded, kcache_padded, vcache_padded; |
|
if (head_size_og % 8 != 0) { |
|
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); |
|
kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); |
|
vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); |
|
} else { |
|
q_padded = q; |
|
kcache_padded = kcache; |
|
vcache_padded = vcache; |
|
} |
|
|
|
at::Tensor out; |
|
if (out_.has_value()) { |
|
out = out_.value(); |
|
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); |
|
CHECK_DEVICE(out); |
|
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); |
|
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og); |
|
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } |
|
} else { |
|
out = torch::empty_like(q_padded); |
|
} |
|
|
|
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; |
|
const int head_size = round_multiple(head_size_og, 8); |
|
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; |
|
const int seqlen_q_rounded = round_multiple(seqlen_q, 128); |
|
const int seqlen_k_rounded = round_multiple(seqlen_k, 128); |
|
|
|
auto opts = q.options(); |
|
|
|
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); |
|
|
|
Flash_fwd_params params; |
|
set_params_fprop(params, |
|
batch_size, |
|
seqlen_q, seqlen_k, |
|
seqlen_q_rounded, seqlen_k_rounded, |
|
num_heads, num_heads_k, |
|
head_size, head_size_rounded, |
|
q_padded, kcache_padded, vcache_padded, out, |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
softmax_lse.data_ptr(), |
|
0.f, |
|
softmax_scale, |
|
window_size_left, |
|
window_size_right, |
|
softcap |
|
); |
|
|
|
at::Tensor k, v, k_padded, v_padded; |
|
if (k_.has_value()) { |
|
TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in"); |
|
TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in"); |
|
TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache"); |
|
k = k_.value(); |
|
v = v_.value(); |
|
TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query"); |
|
TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query"); |
|
CHECK_DEVICE(k); CHECK_DEVICE(v); |
|
TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension"); |
|
TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension"); |
|
int seqlen_knew = k.size(1); |
|
CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og); |
|
CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og); |
|
if (head_size_og % 8 != 0) { |
|
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); |
|
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); |
|
} else { |
|
k_padded = k; |
|
v_padded = v; |
|
} |
|
params.seqlen_knew = seqlen_knew; |
|
params.knew_ptr = k_padded.data_ptr(); |
|
params.vnew_ptr = v_padded.data_ptr(); |
|
|
|
params.knew_batch_stride = k_padded.stride(0); |
|
params.vnew_batch_stride = v_padded.stride(0); |
|
params.knew_row_stride = k_padded.stride(-3); |
|
params.vnew_row_stride = v_padded.stride(-3); |
|
params.knew_head_stride = k_padded.stride(-2); |
|
params.vnew_head_stride = v_padded.stride(-2); |
|
} |
|
|
|
if (seqlens_k_.has_value()) { |
|
auto seqlens_k = seqlens_k_.value(); |
|
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32"); |
|
CHECK_DEVICE(seqlens_k); |
|
CHECK_CONTIGUOUS(seqlens_k); |
|
CHECK_SHAPE(seqlens_k, batch_size); |
|
params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr()); |
|
} |
|
params.is_seqlens_k_cumulative = !(seqlens_k_.has_value()); |
|
if (leftpad_k_.has_value()) { |
|
TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet"); |
|
auto leftpad_k = leftpad_k_.value(); |
|
TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32"); |
|
CHECK_DEVICE(leftpad_k); |
|
CHECK_CONTIGUOUS(leftpad_k); |
|
CHECK_SHAPE(leftpad_k, batch_size); |
|
params.leftpad_k = static_cast<int *>(leftpad_k.data_ptr()); |
|
} |
|
|
|
if (rotary_cos_.has_value()) { |
|
TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided"); |
|
auto rotary_cos = rotary_cos_.value(); |
|
CHECK_DEVICE(rotary_cos); |
|
params.rotary_dim = rotary_cos.size(1) * 2; |
|
TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim"); |
|
TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported"); |
|
const int seqlen_ro = rotary_cos.size(0); |
|
TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache"); |
|
CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2); |
|
CHECK_CONTIGUOUS(rotary_cos); |
|
TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); |
|
|
|
TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided"); |
|
auto rotary_sin = rotary_sin_.value(); |
|
CHECK_DEVICE(rotary_sin); |
|
CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2); |
|
CHECK_CONTIGUOUS(rotary_sin); |
|
TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); |
|
params.rotary_cos_ptr = rotary_cos.data_ptr(); |
|
params.rotary_sin_ptr = rotary_sin.data_ptr(); |
|
params.is_rotary_interleaved = is_rotary_interleaved; |
|
} else { |
|
params.rotary_dim = 0; |
|
} |
|
|
|
if (cache_batch_idx_.has_value()) { |
|
auto cache_batch_idx = cache_batch_idx_.value(); |
|
CHECK_DEVICE(cache_batch_idx); |
|
CHECK_CONTIGUOUS(cache_batch_idx); |
|
TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32"); |
|
params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr()); |
|
} |
|
|
|
|
|
at::Tensor softmax_lse_accum, out_accum; |
|
std::tie(softmax_lse_accum, out_accum) = set_params_splitkv( |
|
params, batch_size, num_heads, head_size, seqlen_k, seqlen_q, |
|
head_size_rounded, 0.f, num_splits, get_num_sm(get_current_device()), opts); |
|
|
|
if (paged_KV) { |
|
params.block_table = block_table.data_ptr<int>(); |
|
params.block_table_batch_stride = block_table.stride(0); |
|
} |
|
params.page_block_size = page_block_size; |
|
|
|
|
|
set_params_alibi(params, alibi_slopes_, batch_size, num_heads); |
|
|
|
auto stream = at::cuda::getCurrentCUDAStream().stream(); |
|
|
|
|
|
run_mha_fwd(params, stream, k_.has_value() || cache_batch_idx_.has_value() || paged_KV); |
|
|
|
if (head_size_og % 8 != 0) { |
|
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); |
|
if (out_.has_value()) { out_.value().copy_(out); } |
|
if (k_.has_value()) { |
|
|
|
|
|
kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); |
|
vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); |
|
} |
|
} |
|
|
|
if (seqlenq_ngroups_swapped) { |
|
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og}); |
|
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1}); |
|
} |
|
return {out, softmax_lse}; |
|
} |
|
} |
|
|
|
|
|
std::vector<torch::Tensor> |
|
mha_fwd(const torch::Tensor &q, |
|
const torch::Tensor &k, |
|
const torch::Tensor &v, |
|
const c10::optional<torch::Tensor> &out_, |
|
const c10::optional<torch::Tensor> &alibi_slopes_, |
|
const double p_dropout, |
|
const double softmax_scale, |
|
bool is_causal, |
|
const int64_t window_size_left, |
|
const int64_t window_size_right, |
|
const double softcap, |
|
const bool return_softmax, |
|
const c10::optional<at::Generator> gen_) { |
|
|
|
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
|
|
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt; |
|
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt; |
|
|
|
if (!out.has_value()){ |
|
out = torch::empty_like(q); |
|
} |
|
|
|
|
|
float p_dropout_float = static_cast<float>(p_dropout); |
|
float softmax_scale_float = static_cast<float>(softmax_scale); |
|
float softcap_float = static_cast<float>(softcap); |
|
int window_size_left_int = static_cast<int>(window_size_left); |
|
int window_size_right_int = static_cast<int>(window_size_right); |
|
|
|
return FLASH_NAMESPACE::mha_fwd(const_cast<at::Tensor &>(q), k, v, out, alibi_slopes, p_dropout_float, softmax_scale_float, is_causal, window_size_left_int, window_size_right_int, softcap_float, return_softmax, gen); |
|
} |
|
|
|
std::vector<torch::Tensor> |
|
mha_varlen_fwd(const torch::Tensor &q, |
|
const torch::Tensor &k, |
|
const torch::Tensor &v, |
|
const c10::optional<torch::Tensor> &out_, |
|
const torch::Tensor &cu_seqlens_q, |
|
const torch::Tensor &cu_seqlens_k, |
|
const c10::optional<torch::Tensor> &seqused_k_, |
|
const c10::optional<torch::Tensor> &leftpad_k_, |
|
const c10::optional<torch::Tensor> &block_table_, |
|
const c10::optional<torch::Tensor> &alibi_slopes_, |
|
const int64_t max_seqlen_q, |
|
const int64_t max_seqlen_k, |
|
const double p_dropout, |
|
const double softmax_scale, |
|
const bool zero_tensors, |
|
const bool is_causal, |
|
const int64_t window_size_left, |
|
const int64_t window_size_right, |
|
const double softcap, |
|
const bool return_softmax, |
|
const c10::optional<at::Generator> gen_) { |
|
|
|
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt; |
|
std::optional<at::Tensor> seqused_k = seqused_k_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(seqused_k_.value())) : std::nullopt; |
|
std::optional<const at::Tensor> leftpad_k = leftpad_k_.has_value() ? std::optional<const at::Tensor>(leftpad_k_.value()) : std::nullopt; |
|
std::optional<at::Tensor> block_table = block_table_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(block_table_.value())) : std::nullopt; |
|
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt; |
|
|
|
if (!out.has_value()){ |
|
out = torch::empty_like(q); |
|
} |
|
|
|
float p_dropout_float = static_cast<float>(p_dropout); |
|
float softmax_scale_float = static_cast<float>(softmax_scale); |
|
float softcap_float = static_cast<float>(softcap); |
|
int max_seqlen_q_int = static_cast<int>(max_seqlen_q); |
|
int max_seqlen_k_int = static_cast<int>(max_seqlen_k); |
|
int window_size_left_int = static_cast<int>(window_size_left); |
|
int window_size_right_int = static_cast<int>(window_size_right); |
|
|
|
return FLASH_NAMESPACE::mha_varlen_fwd( |
|
const_cast<at::Tensor &>(q), k, v, out, |
|
cu_seqlens_q, cu_seqlens_k, |
|
seqused_k, leftpad_k, block_table, alibi_slopes, |
|
max_seqlen_q_int, max_seqlen_k_int, |
|
p_dropout_float, softmax_scale_float, |
|
zero_tensors, is_causal, |
|
window_size_left_int, window_size_right_int, |
|
softcap_float, return_softmax, gen); |
|
} |
|
|
|
std::vector<torch::Tensor> |
|
mha_bwd(const torch::Tensor &dout, |
|
const torch::Tensor &q, |
|
const torch::Tensor &k, |
|
const torch::Tensor &v, |
|
const torch::Tensor &out, |
|
const torch::Tensor &softmax_lse, |
|
const c10::optional<torch::Tensor> &dq_, |
|
const c10::optional<torch::Tensor> &dk_, |
|
const c10::optional<torch::Tensor> &dv_, |
|
const c10::optional<torch::Tensor> &alibi_slopes_, |
|
const double p_dropout, |
|
const double softmax_scale, |
|
const bool is_causal, |
|
const int64_t window_size_left, |
|
const int64_t window_size_right, |
|
const double softcap, |
|
const bool deterministic, |
|
c10::optional<torch::Generator> gen_, |
|
const c10::optional<torch::Tensor> &rng_state) { |
|
|
|
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
|
|
std::optional<at::Tensor> dq = dq_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dq_.value())) : std::nullopt; |
|
std::optional<at::Tensor> dk = dk_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dk_.value())) : std::nullopt; |
|
std::optional<at::Tensor> dv = dv_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dv_.value())) : std::nullopt; |
|
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt; |
|
|
|
|
|
float p_dropout_float = static_cast<float>(p_dropout); |
|
float softmax_scale_float = static_cast<float>(softmax_scale); |
|
float softcap_float = static_cast<float>(softcap); |
|
int window_size_left_int = static_cast<int>(window_size_left); |
|
int window_size_right_int = static_cast<int>(window_size_right); |
|
|
|
|
|
|
|
std::optional<at::Tensor> rng_state_copy; |
|
if (rng_state.has_value()) { |
|
rng_state_copy = rng_state.value().clone(); |
|
} |
|
|
|
return FLASH_NAMESPACE::mha_bwd( |
|
const_cast<at::Tensor &>(dout), |
|
q, k, v, out, softmax_lse, |
|
dq, dk, dv, alibi_slopes, |
|
p_dropout_float, softmax_scale_float, |
|
is_causal, |
|
window_size_left_int, window_size_right_int, |
|
softcap_float, deterministic, |
|
gen, rng_state_copy); |
|
} |
|
|
|
|
|
std::vector<torch::Tensor> |
|
mha_varlen_bwd(const torch::Tensor &dout, |
|
const torch::Tensor &q, |
|
const torch::Tensor &k, |
|
const torch::Tensor &v, |
|
const torch::Tensor &out, |
|
const torch::Tensor &softmax_lse, |
|
const c10::optional<torch::Tensor> &dq_, |
|
const c10::optional<torch::Tensor> &dk_, |
|
const c10::optional<torch::Tensor> &dv_, |
|
const torch::Tensor &cu_seqlens_q, |
|
const torch::Tensor &cu_seqlens_k, |
|
const c10::optional<torch::Tensor> &alibi_slopes_, |
|
const int64_t max_seqlen_q, |
|
const int64_t max_seqlen_k, |
|
const double p_dropout, |
|
const double softmax_scale, |
|
const bool zero_tensors, |
|
const bool is_causal, |
|
const int64_t window_size_left, |
|
const int64_t window_size_right, |
|
const double softcap, |
|
const bool deterministic, |
|
c10::optional<torch::Generator> gen_, |
|
const c10::optional<torch::Tensor> &rng_state) { |
|
|
|
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator()); |
|
|
|
|
|
std::optional<at::Tensor> dq = dq_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dq_.value())) : std::nullopt; |
|
std::optional<at::Tensor> dk = dk_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dk_.value())) : std::nullopt; |
|
std::optional<at::Tensor> dv = dv_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(dv_.value())) : std::nullopt; |
|
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt; |
|
|
|
|
|
float p_dropout_float = static_cast<float>(p_dropout); |
|
float softmax_scale_float = static_cast<float>(softmax_scale); |
|
float softcap_float = static_cast<float>(softcap); |
|
int max_seqlen_q_int = static_cast<int>(max_seqlen_q); |
|
int max_seqlen_k_int = static_cast<int>(max_seqlen_k); |
|
int window_size_left_int = static_cast<int>(window_size_left); |
|
int window_size_right_int = static_cast<int>(window_size_right); |
|
|
|
|
|
|
|
|
|
std::optional<at::Tensor> rng_state_copy; |
|
if (rng_state.has_value()) { |
|
rng_state_copy = rng_state.value().clone(); |
|
} |
|
|
|
return FLASH_NAMESPACE::mha_varlen_bwd( |
|
const_cast<at::Tensor &>(dout), |
|
q, k, v, out, softmax_lse, |
|
dq, dk, dv, |
|
cu_seqlens_q, cu_seqlens_k, |
|
alibi_slopes, |
|
max_seqlen_q_int, max_seqlen_k_int, |
|
p_dropout_float, softmax_scale_float, |
|
zero_tensors, is_causal, |
|
window_size_left_int, window_size_right_int, |
|
softcap_float, deterministic, |
|
gen, rng_state_copy); |
|
} |
|
|
|
std::vector<torch::Tensor> |
|
mha_fwd_kvcache(const torch::Tensor &q, |
|
const torch::Tensor &kcache, |
|
const torch::Tensor &vcache, |
|
const c10::optional<torch::Tensor> &k_, |
|
const c10::optional<torch::Tensor> &v_, |
|
const c10::optional<torch::Tensor> &seqlens_k_, |
|
const c10::optional<torch::Tensor> &rotary_cos_, |
|
const c10::optional<torch::Tensor> &rotary_sin_, |
|
const c10::optional<torch::Tensor> &cache_batch_idx_, |
|
const c10::optional<torch::Tensor> &leftpad_k_, |
|
const c10::optional<torch::Tensor> &block_table_, |
|
const c10::optional<torch::Tensor> &alibi_slopes_, |
|
const c10::optional<torch::Tensor> &out_, |
|
const double softmax_scale, |
|
bool is_causal, |
|
const int64_t window_size_left, |
|
const int64_t window_size_right, |
|
const double softcap, |
|
bool is_rotary_interleaved, |
|
const int64_t num_splits) { |
|
|
|
|
|
std::optional<const at::Tensor> k = k_.has_value() ? std::optional<const at::Tensor>(k_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> v = v_.has_value() ? std::optional<const at::Tensor>(v_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> seqlens_k = seqlens_k_.has_value() ? std::optional<const at::Tensor>(seqlens_k_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> rotary_cos = rotary_cos_.has_value() ? std::optional<const at::Tensor>(rotary_cos_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> rotary_sin = rotary_sin_.has_value() ? std::optional<const at::Tensor>(rotary_sin_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> cache_batch_idx = cache_batch_idx_.has_value() ? std::optional<const at::Tensor>(cache_batch_idx_.value()) : std::nullopt; |
|
std::optional<const at::Tensor> leftpad_k = leftpad_k_.has_value() ? std::optional<const at::Tensor>(leftpad_k_.value()) : std::nullopt; |
|
|
|
|
|
std::optional<at::Tensor> block_table = block_table_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(block_table_.value())) : std::nullopt; |
|
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt; |
|
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt; |
|
|
|
if (!out.has_value()){ |
|
out = torch::empty_like(q); |
|
} |
|
|
|
|
|
float softmax_scale_float = static_cast<float>(softmax_scale); |
|
float softcap_float = static_cast<float>(softcap); |
|
int window_size_left_int = static_cast<int>(window_size_left); |
|
int window_size_right_int = static_cast<int>(window_size_right); |
|
int num_splits_int = static_cast<int>(num_splits); |
|
|
|
return FLASH_NAMESPACE::mha_fwd_kvcache( |
|
const_cast<at::Tensor &>(q), |
|
kcache, vcache, |
|
k, v, |
|
seqlens_k, |
|
rotary_cos, rotary_sin, |
|
cache_batch_idx, |
|
leftpad_k, |
|
block_table, alibi_slopes, |
|
out, |
|
softmax_scale_float, |
|
is_causal, |
|
window_size_left_int, window_size_right_int, |
|
softcap_float, |
|
is_rotary_interleaved, |
|
num_splits_int |
|
); |
|
} |