drbh
commited on
Commit
·
a7165c8
1
Parent(s):
bdaa00d
feat: include source and enable build
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- build.toml +126 -0
- flake.lock +117 -0
- flake.nix +17 -0
- flash_attn/flash_api.cpp +1496 -0
- flash_attn/src/alibi.h +75 -0
- flash_attn/src/block_info.h +49 -0
- flash_attn/src/dropout.h +95 -0
- flash_attn/src/flash.h +194 -0
- flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim160_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim160_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim192_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim192_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim256_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim256_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim32_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim32_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim64_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim64_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim96_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim96_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu +14 -0
- flash_attn/src/flash_bwd_kernel.h +839 -0
- flash_attn/src/flash_bwd_launch_template.h +328 -0
- flash_attn/src/flash_bwd_preprocess_kernel.h +379 -0
- flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu +14 -0
- flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu +14 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.bak
|
build.toml
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[general]
|
2 |
+
name = "flash_attn"
|
3 |
+
|
4 |
+
[torch]
|
5 |
+
src = ["torch-ext/torch_binding.cpp", "torch-ext/torch_binding.h"]
|
6 |
+
|
7 |
+
[kernel.flash_attn]
|
8 |
+
cuda-capabilities = ["7.0", "7.2", "7.5", "8.0", "8.6", "8.7", "8.9", "9.0"]
|
9 |
+
src = [
|
10 |
+
"flash_attn/flash_api.cpp",
|
11 |
+
"flash_attn/src/philox_unpack.cuh",
|
12 |
+
"flash_attn/src/namespace_config.h",
|
13 |
+
"flash_attn/src/hardware_info.h",
|
14 |
+
"flash_attn/src/flash.h",
|
15 |
+
"flash_attn/src/static_switch.h",
|
16 |
+
#
|
17 |
+
"flash_attn/src/alibi.h",
|
18 |
+
"flash_attn/src/block_info.h",
|
19 |
+
"flash_attn/src/dropout.h",
|
20 |
+
|
21 |
+
# TODO: dont skip bwd kernels
|
22 |
+
|
23 |
+
# "flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
|
24 |
+
# "flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
|
25 |
+
# "flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
|
26 |
+
# "flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
|
27 |
+
# "flash_attn/src/flash_bwd_hdim160_bf16_causal_sm80.cu",
|
28 |
+
# "flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
|
29 |
+
# "flash_attn/src/flash_bwd_hdim160_fp16_causal_sm80.cu",
|
30 |
+
# "flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
|
31 |
+
# "flash_attn/src/flash_bwd_hdim192_bf16_causal_sm80.cu",
|
32 |
+
# "flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
|
33 |
+
# "flash_attn/src/flash_bwd_hdim192_fp16_causal_sm80.cu",
|
34 |
+
# "flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
|
35 |
+
# "flash_attn/src/flash_bwd_hdim256_bf16_causal_sm80.cu",
|
36 |
+
# "flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
|
37 |
+
# "flash_attn/src/flash_bwd_hdim256_fp16_causal_sm80.cu",
|
38 |
+
# "flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
|
39 |
+
# "flash_attn/src/flash_bwd_hdim32_bf16_causal_sm80.cu",
|
40 |
+
# "flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
|
41 |
+
# "flash_attn/src/flash_bwd_hdim32_fp16_causal_sm80.cu",
|
42 |
+
# "flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
|
43 |
+
# "flash_attn/src/flash_bwd_hdim64_bf16_causal_sm80.cu",
|
44 |
+
# "flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
|
45 |
+
# "flash_attn/src/flash_bwd_hdim64_fp16_causal_sm80.cu",
|
46 |
+
# "flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
|
47 |
+
# "flash_attn/src/flash_bwd_hdim96_bf16_causal_sm80.cu",
|
48 |
+
# "flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
|
49 |
+
# "flash_attn/src/flash_bwd_hdim96_fp16_causal_sm80.cu",
|
50 |
+
# "flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
|
51 |
+
# "flash_attn/src/flash_bwd_kernel.h",
|
52 |
+
# "flash_attn/src/flash_bwd_launch_template.h",
|
53 |
+
# "flash_attn/src/flash_bwd_preprocess_kernel.h",
|
54 |
+
|
55 |
+
"flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
|
56 |
+
"flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
|
57 |
+
"flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
|
58 |
+
"flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
|
59 |
+
"flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu",
|
60 |
+
"flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
|
61 |
+
"flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu",
|
62 |
+
"flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
|
63 |
+
"flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu",
|
64 |
+
"flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
|
65 |
+
"flash_attn/src/flash_fwd_hdim192_fp16_causal_sm80.cu",
|
66 |
+
"flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
|
67 |
+
"flash_attn/src/flash_fwd_hdim256_bf16_causal_sm80.cu",
|
68 |
+
"flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
|
69 |
+
"flash_attn/src/flash_fwd_hdim256_fp16_causal_sm80.cu",
|
70 |
+
"flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
|
71 |
+
"flash_attn/src/flash_fwd_hdim32_bf16_causal_sm80.cu",
|
72 |
+
"flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
|
73 |
+
"flash_attn/src/flash_fwd_hdim32_fp16_causal_sm80.cu",
|
74 |
+
"flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
|
75 |
+
"flash_attn/src/flash_fwd_hdim64_bf16_causal_sm80.cu",
|
76 |
+
"flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
|
77 |
+
"flash_attn/src/flash_fwd_hdim64_fp16_causal_sm80.cu",
|
78 |
+
"flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
|
79 |
+
"flash_attn/src/flash_fwd_hdim96_bf16_causal_sm80.cu",
|
80 |
+
"flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
|
81 |
+
"flash_attn/src/flash_fwd_hdim96_fp16_causal_sm80.cu",
|
82 |
+
"flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
|
83 |
+
"flash_attn/src/flash_fwd_kernel.h",
|
84 |
+
"flash_attn/src/flash_fwd_launch_template.h",
|
85 |
+
"flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
|
86 |
+
"flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
|
87 |
+
"flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
|
88 |
+
"flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
|
89 |
+
"flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu",
|
90 |
+
"flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
|
91 |
+
"flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu",
|
92 |
+
"flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
|
93 |
+
"flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu",
|
94 |
+
"flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
|
95 |
+
"flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu",
|
96 |
+
"flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
|
97 |
+
"flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu",
|
98 |
+
"flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
|
99 |
+
"flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu",
|
100 |
+
"flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
|
101 |
+
"flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu",
|
102 |
+
"flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
|
103 |
+
"flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu",
|
104 |
+
"flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
|
105 |
+
"flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu",
|
106 |
+
"flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
|
107 |
+
"flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu",
|
108 |
+
"flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
|
109 |
+
"flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu",
|
110 |
+
"flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
|
111 |
+
"flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu",
|
112 |
+
"flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
|
113 |
+
"flash_attn/src/flash.h",
|
114 |
+
"flash_attn/src/generate_kernels.py",
|
115 |
+
"flash_attn/src/hardware_info.h",
|
116 |
+
"flash_attn/src/kernel_traits.h",
|
117 |
+
"flash_attn/src/mask.h",
|
118 |
+
"flash_attn/src/namespace_config.h",
|
119 |
+
"flash_attn/src/philox.cuh",
|
120 |
+
"flash_attn/src/philox_unpack.cuh",
|
121 |
+
"flash_attn/src/rotary.h",
|
122 |
+
"flash_attn/src/softmax.h",
|
123 |
+
"flash_attn/src/static_switch.h",
|
124 |
+
"flash_attn/src/utils.h",
|
125 |
+
]
|
126 |
+
depends = ["torch", "cutlass_3_6"]
|
flake.lock
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nodes": {
|
3 |
+
"flake-compat": {
|
4 |
+
"locked": {
|
5 |
+
"lastModified": 1733328505,
|
6 |
+
"narHash": "sha256-NeCCThCEP3eCl2l/+27kNNK7QrwZB1IJCrXfrbv5oqU=",
|
7 |
+
"owner": "edolstra",
|
8 |
+
"repo": "flake-compat",
|
9 |
+
"rev": "ff81ac966bb2cae68946d5ed5fc4994f96d0ffec",
|
10 |
+
"type": "github"
|
11 |
+
},
|
12 |
+
"original": {
|
13 |
+
"owner": "edolstra",
|
14 |
+
"repo": "flake-compat",
|
15 |
+
"type": "github"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"flake-utils": {
|
19 |
+
"inputs": {
|
20 |
+
"systems": "systems"
|
21 |
+
},
|
22 |
+
"locked": {
|
23 |
+
"lastModified": 1731533236,
|
24 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
25 |
+
"owner": "numtide",
|
26 |
+
"repo": "flake-utils",
|
27 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
28 |
+
"type": "github"
|
29 |
+
},
|
30 |
+
"original": {
|
31 |
+
"owner": "numtide",
|
32 |
+
"repo": "flake-utils",
|
33 |
+
"type": "github"
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"kernel-builder": {
|
37 |
+
"inputs": {
|
38 |
+
"flake-compat": "flake-compat",
|
39 |
+
"flake-utils": "flake-utils",
|
40 |
+
"nixpkgs": "nixpkgs",
|
41 |
+
"rocm-nix": "rocm-nix"
|
42 |
+
},
|
43 |
+
"locked": {
|
44 |
+
"lastModified": 1742582705,
|
45 |
+
"narHash": "sha256-1Vq5IauC/8fjBqcnMbDzckLN/XLIGwWr3/c2Wt3I2vs=",
|
46 |
+
"ref": "refs/heads/main",
|
47 |
+
"rev": "e06e3e72947fad8bfd2c1eb5d8e7f5ec01d359d6",
|
48 |
+
"revCount": 103,
|
49 |
+
"type": "git",
|
50 |
+
"url": "ssh://[email protected]/huggingface/kernel-builder"
|
51 |
+
},
|
52 |
+
"original": {
|
53 |
+
"type": "git",
|
54 |
+
"url": "ssh://[email protected]/huggingface/kernel-builder"
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"nixpkgs": {
|
58 |
+
"locked": {
|
59 |
+
"lastModified": 1740557110,
|
60 |
+
"narHash": "sha256-D2waFyJkaepTchTrGVAIfCd/YP+37bgXWg9cXwuxuT0=",
|
61 |
+
"owner": "nixos",
|
62 |
+
"repo": "nixpkgs",
|
63 |
+
"rev": "b89a821293c3872992137114d0db9a791243a41b",
|
64 |
+
"type": "github"
|
65 |
+
},
|
66 |
+
"original": {
|
67 |
+
"owner": "nixos",
|
68 |
+
"ref": "nixos-unstable-small",
|
69 |
+
"repo": "nixpkgs",
|
70 |
+
"type": "github"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"rocm-nix": {
|
74 |
+
"inputs": {
|
75 |
+
"nixpkgs": [
|
76 |
+
"kernel-builder",
|
77 |
+
"nixpkgs"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"locked": {
|
81 |
+
"lastModified": 1742285724,
|
82 |
+
"narHash": "sha256-2QQn9fzmF/SKW082kXpSrEBgfmwKO2RNT5R91Fn/K4M=",
|
83 |
+
"owner": "huggingface",
|
84 |
+
"repo": "rocm-nix",
|
85 |
+
"rev": "a90de1c2e5698b2f4fe984b5f0faf052f466be49",
|
86 |
+
"type": "github"
|
87 |
+
},
|
88 |
+
"original": {
|
89 |
+
"owner": "huggingface",
|
90 |
+
"repo": "rocm-nix",
|
91 |
+
"type": "github"
|
92 |
+
}
|
93 |
+
},
|
94 |
+
"root": {
|
95 |
+
"inputs": {
|
96 |
+
"kernel-builder": "kernel-builder"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"systems": {
|
100 |
+
"locked": {
|
101 |
+
"lastModified": 1681028828,
|
102 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
103 |
+
"owner": "nix-systems",
|
104 |
+
"repo": "default",
|
105 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
106 |
+
"type": "github"
|
107 |
+
},
|
108 |
+
"original": {
|
109 |
+
"owner": "nix-systems",
|
110 |
+
"repo": "default",
|
111 |
+
"type": "github"
|
112 |
+
}
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"root": "root",
|
116 |
+
"version": 7
|
117 |
+
}
|
flake.nix
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
description = "Flake for ReLU kernel";
|
3 |
+
|
4 |
+
inputs = {
|
5 |
+
kernel-builder.url = "git+ssh://[email protected]/huggingface/kernel-builder";
|
6 |
+
};
|
7 |
+
|
8 |
+
outputs =
|
9 |
+
{
|
10 |
+
self,
|
11 |
+
kernel-builder,
|
12 |
+
}:
|
13 |
+
kernel-builder.lib.genFlakeOutputs {
|
14 |
+
path = ./.;
|
15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
};
|
17 |
+
}
|
flash_attn/flash_api.cpp
ADDED
@@ -0,0 +1,1496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2024, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
|
6 |
+
// #include <torch/python.h>
|
7 |
+
#include <torch/nn/functional.h>
|
8 |
+
#include <c10/cuda/CUDAGuard.h>
|
9 |
+
#include <c10/cuda/CUDAStream.h>
|
10 |
+
#include <ATen/cuda/CUDAGeneratorImpl.h> // For at::Generator and at::PhiloxCudaState
|
11 |
+
#include "src/philox_unpack.cuh" // For at::cuda::philox::unpack
|
12 |
+
|
13 |
+
#include <cutlass/numeric_types.h>
|
14 |
+
|
15 |
+
#include "src/namespace_config.h"
|
16 |
+
#include "src/hardware_info.h"
|
17 |
+
#include "src/flash.h"
|
18 |
+
#include "src/static_switch.h"
|
19 |
+
|
20 |
+
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
|
21 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
22 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
23 |
+
|
24 |
+
namespace FLASH_NAMESPACE {
|
25 |
+
|
26 |
+
void set_params_fprop(Flash_fwd_params ¶ms,
|
27 |
+
// sizes
|
28 |
+
const size_t b,
|
29 |
+
const size_t seqlen_q,
|
30 |
+
const size_t seqlen_k,
|
31 |
+
const size_t seqlen_q_rounded,
|
32 |
+
const size_t seqlen_k_rounded,
|
33 |
+
const size_t h,
|
34 |
+
const size_t h_k,
|
35 |
+
const size_t d,
|
36 |
+
const size_t d_rounded,
|
37 |
+
// device pointers
|
38 |
+
const at::Tensor q,
|
39 |
+
const at::Tensor k,
|
40 |
+
const at::Tensor v,
|
41 |
+
at::Tensor out,
|
42 |
+
void *cu_seqlens_q_d,
|
43 |
+
void *cu_seqlens_k_d,
|
44 |
+
void *seqused_k,
|
45 |
+
void *p_d,
|
46 |
+
void *softmax_lse_d,
|
47 |
+
float p_dropout,
|
48 |
+
float softmax_scale,
|
49 |
+
int window_size_left,
|
50 |
+
int window_size_right,
|
51 |
+
const float softcap,
|
52 |
+
bool seqlenq_ngroups_swapped=false,
|
53 |
+
const bool unpadded_lse=false) {
|
54 |
+
|
55 |
+
// Reset the parameters
|
56 |
+
params = {};
|
57 |
+
|
58 |
+
params.is_bf16 = q.dtype() == torch::kBFloat16;
|
59 |
+
|
60 |
+
// Set the pointers and strides.
|
61 |
+
params.q_ptr = q.data_ptr();
|
62 |
+
params.k_ptr = k.data_ptr();
|
63 |
+
params.v_ptr = v.data_ptr();
|
64 |
+
// All stride are in elements, not bytes.
|
65 |
+
params.q_row_stride = q.stride(-3);
|
66 |
+
params.k_row_stride = k.stride(-3);
|
67 |
+
params.v_row_stride = v.stride(-3);
|
68 |
+
params.q_head_stride = q.stride(-2);
|
69 |
+
params.k_head_stride = k.stride(-2);
|
70 |
+
params.v_head_stride = v.stride(-2);
|
71 |
+
params.o_ptr = out.data_ptr();
|
72 |
+
params.o_row_stride = out.stride(-3);
|
73 |
+
params.o_head_stride = out.stride(-2);
|
74 |
+
|
75 |
+
if (cu_seqlens_q_d == nullptr) {
|
76 |
+
params.q_batch_stride = q.stride(0);
|
77 |
+
params.k_batch_stride = k.stride(0);
|
78 |
+
params.v_batch_stride = v.stride(0);
|
79 |
+
params.o_batch_stride = out.stride(0);
|
80 |
+
if (seqlenq_ngroups_swapped) {
|
81 |
+
params.q_batch_stride *= seqlen_q;
|
82 |
+
params.o_batch_stride *= seqlen_q;
|
83 |
+
}
|
84 |
+
}
|
85 |
+
|
86 |
+
params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
|
87 |
+
params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
|
88 |
+
params.seqused_k = static_cast<int *>(seqused_k);
|
89 |
+
|
90 |
+
// P = softmax(QK^T)
|
91 |
+
params.p_ptr = p_d;
|
92 |
+
|
93 |
+
// Softmax sum
|
94 |
+
params.softmax_lse_ptr = softmax_lse_d;
|
95 |
+
|
96 |
+
// Set the dimensions.
|
97 |
+
params.b = b;
|
98 |
+
params.h = h;
|
99 |
+
params.h_k = h_k;
|
100 |
+
params.h_h_k_ratio = h / h_k;
|
101 |
+
params.seqlen_q = seqlen_q;
|
102 |
+
params.seqlen_k = seqlen_k;
|
103 |
+
params.seqlen_q_rounded = seqlen_q_rounded;
|
104 |
+
params.seqlen_k_rounded = seqlen_k_rounded;
|
105 |
+
params.d = d;
|
106 |
+
params.d_rounded = d_rounded;
|
107 |
+
|
108 |
+
// Set the different scale values.
|
109 |
+
#ifdef FLASHATTENTION_DISABLE_SOFTCAP
|
110 |
+
TORCH_CHECK(softcap <= 0.0, "This flash attention build does not support softcap.");
|
111 |
+
#endif
|
112 |
+
if (softcap > 0.0) {
|
113 |
+
params.softcap = softmax_scale / softcap;
|
114 |
+
params.scale_softmax = softcap;
|
115 |
+
params.scale_softmax_log2 = softcap * M_LOG2E;
|
116 |
+
} else{
|
117 |
+
// Remove potential NaN
|
118 |
+
params.softcap = 0.0;
|
119 |
+
params.scale_softmax = softmax_scale;
|
120 |
+
params.scale_softmax_log2 = softmax_scale * M_LOG2E;
|
121 |
+
}
|
122 |
+
|
123 |
+
// Set this to probability of keeping an element to simplify things.
|
124 |
+
params.p_dropout = 1.f - p_dropout;
|
125 |
+
// Convert p from float to int so we don't have to convert the random uint to float to compare.
|
126 |
+
// [Minor] We want to round down since when we do the comparison we use <= instead of <
|
127 |
+
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
|
128 |
+
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
|
129 |
+
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
|
130 |
+
params.rp_dropout = 1.f / params.p_dropout;
|
131 |
+
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
|
132 |
+
TORCH_CHECK(p_dropout < 1.f);
|
133 |
+
#ifdef FLASHATTENTION_DISABLE_DROPOUT
|
134 |
+
TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
|
135 |
+
#endif
|
136 |
+
|
137 |
+
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
|
138 |
+
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
|
139 |
+
params.is_causal = window_size_left < 0 && window_size_right == 0;
|
140 |
+
|
141 |
+
if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
|
142 |
+
if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
|
143 |
+
params.window_size_left = window_size_left;
|
144 |
+
params.window_size_right = window_size_right;
|
145 |
+
|
146 |
+
#ifdef FLASHATTENTION_DISABLE_LOCAL
|
147 |
+
TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
|
148 |
+
"This flash attention build does not support local attention.");
|
149 |
+
#endif
|
150 |
+
|
151 |
+
params.is_seqlens_k_cumulative = true;
|
152 |
+
|
153 |
+
#ifdef FLASHATTENTION_DISABLE_UNEVEN_K
|
154 |
+
TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32.");
|
155 |
+
#endif
|
156 |
+
|
157 |
+
params.unpadded_lse = unpadded_lse;
|
158 |
+
params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped;
|
159 |
+
}
|
160 |
+
|
161 |
+
void set_params_dgrad(Flash_bwd_params ¶ms,
|
162 |
+
// sizes
|
163 |
+
const size_t b,
|
164 |
+
const size_t seqlen_q,
|
165 |
+
const size_t seqlen_k,
|
166 |
+
const size_t seqlen_q_rounded,
|
167 |
+
const size_t seqlen_k_rounded,
|
168 |
+
const size_t h,
|
169 |
+
const size_t h_k,
|
170 |
+
const size_t d,
|
171 |
+
const size_t d_rounded,
|
172 |
+
// device pointers
|
173 |
+
const at::Tensor q,
|
174 |
+
const at::Tensor k,
|
175 |
+
const at::Tensor v,
|
176 |
+
const at::Tensor out,
|
177 |
+
const at::Tensor dout,
|
178 |
+
at::Tensor dq,
|
179 |
+
at::Tensor dk,
|
180 |
+
at::Tensor dv,
|
181 |
+
void *cu_seqlens_q_d,
|
182 |
+
void *cu_seqlens_k_d,
|
183 |
+
void *dq_accum_d,
|
184 |
+
void *dk_accum_d,
|
185 |
+
void *dv_accum_d,
|
186 |
+
void *softmax_lse_d,
|
187 |
+
void *dsoftmax_sum_d,
|
188 |
+
float p_dropout,
|
189 |
+
float softmax_scale,
|
190 |
+
int window_size_left,
|
191 |
+
int window_size_right,
|
192 |
+
const float softcap,
|
193 |
+
bool deterministic,
|
194 |
+
const bool unpadded_lse) {
|
195 |
+
|
196 |
+
set_params_fprop(params,
|
197 |
+
b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
|
198 |
+
q, k, v, out,
|
199 |
+
cu_seqlens_q_d,
|
200 |
+
cu_seqlens_k_d,
|
201 |
+
nullptr,
|
202 |
+
nullptr,
|
203 |
+
softmax_lse_d,
|
204 |
+
p_dropout,
|
205 |
+
softmax_scale,
|
206 |
+
window_size_left,
|
207 |
+
window_size_right,
|
208 |
+
softcap,
|
209 |
+
false, // seqlenq_ngroups_swapped
|
210 |
+
unpadded_lse);
|
211 |
+
|
212 |
+
// Set the pointers and strides.
|
213 |
+
params.do_ptr = dout.data_ptr();
|
214 |
+
params.do_row_stride = dout.stride(-3);
|
215 |
+
params.do_head_stride = dout.stride(-2);
|
216 |
+
params.dq_ptr = dq.data_ptr();
|
217 |
+
params.dk_ptr = dk.data_ptr();
|
218 |
+
params.dv_ptr = dv.data_ptr();
|
219 |
+
params.dq_row_stride = dq.stride(-3);
|
220 |
+
params.dk_row_stride = dk.stride(-3);
|
221 |
+
params.dv_row_stride = dv.stride(-3);
|
222 |
+
params.dq_head_stride = dq.stride(-2);
|
223 |
+
params.dk_head_stride = dk.stride(-2);
|
224 |
+
params.dv_head_stride = dv.stride(-2);
|
225 |
+
|
226 |
+
if (cu_seqlens_q_d == nullptr) {
|
227 |
+
params.do_batch_stride = dout.stride(0);
|
228 |
+
params.dq_batch_stride = dq.stride(0);
|
229 |
+
params.dk_batch_stride = dk.stride(0);
|
230 |
+
params.dv_batch_stride = dv.stride(0);
|
231 |
+
}
|
232 |
+
|
233 |
+
params.dq_accum_ptr = dq_accum_d;
|
234 |
+
params.dk_accum_ptr = dk_accum_d;
|
235 |
+
params.dv_accum_ptr = dv_accum_d;
|
236 |
+
|
237 |
+
// Softmax sum
|
238 |
+
params.dsoftmax_sum = dsoftmax_sum_d;
|
239 |
+
|
240 |
+
params.deterministic = deterministic;
|
241 |
+
}
|
242 |
+
|
243 |
+
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) {
|
244 |
+
FP16_SWITCH(!params.is_bf16, [&] {
|
245 |
+
HEADDIM_SWITCH(params.d, [&] {
|
246 |
+
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
|
247 |
+
if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0
|
248 |
+
run_mha_fwd_<elem_type, kHeadDim, Is_causal>(params, stream);
|
249 |
+
} else {
|
250 |
+
run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim, Is_causal>(params, stream);
|
251 |
+
}
|
252 |
+
});
|
253 |
+
});
|
254 |
+
});
|
255 |
+
}
|
256 |
+
|
257 |
+
// Find the number of splits that maximizes the occupancy. For example, if we have
|
258 |
+
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
|
259 |
+
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
|
260 |
+
// splits as that would incur more HBM reads/writes.
|
261 |
+
// So we find the best efficiency, then find the smallest number of splits that gets 85%
|
262 |
+
// of the best efficiency.
|
263 |
+
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
|
264 |
+
// If we have enough to almost fill the SMs, then just use 1 split
|
265 |
+
if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
|
266 |
+
max_splits = std::min({max_splits, num_SMs, num_n_blocks});
|
267 |
+
float max_efficiency = 0.f;
|
268 |
+
std::vector<float> efficiency;
|
269 |
+
efficiency.reserve(max_splits);
|
270 |
+
auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
|
271 |
+
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
|
272 |
+
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
|
273 |
+
// (i.e. it's 11 splits anyway).
|
274 |
+
// So we check if the number of blocks per split is the same as the previous num_splits.
|
275 |
+
auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
|
276 |
+
return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
|
277 |
+
};
|
278 |
+
for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
|
279 |
+
if (!is_split_eligible(num_splits)) {
|
280 |
+
efficiency.push_back(0.f);
|
281 |
+
} else {
|
282 |
+
float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
|
283 |
+
float eff = n_waves / ceil(n_waves);
|
284 |
+
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
|
285 |
+
if (eff > max_efficiency) { max_efficiency = eff; }
|
286 |
+
efficiency.push_back(eff);
|
287 |
+
}
|
288 |
+
}
|
289 |
+
for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
|
290 |
+
if (!is_split_eligible(num_splits)) { continue; }
|
291 |
+
if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
|
292 |
+
// printf("num_splits chosen = %d\n", num_splits);
|
293 |
+
return num_splits;
|
294 |
+
}
|
295 |
+
}
|
296 |
+
return 1;
|
297 |
+
}
|
298 |
+
|
299 |
+
std::tuple<at::Tensor, at::Tensor> set_params_splitkv(Flash_fwd_params ¶ms, const int batch_size,
|
300 |
+
const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q,
|
301 |
+
const int head_size_rounded, const float p_dropout,
|
302 |
+
const int num_splits, const int num_sm, struct c10::TensorOptions opts) {
|
303 |
+
|
304 |
+
// This needs to match with run_mha_fwd_splitkv_dispatch
|
305 |
+
const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
|
306 |
+
const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n;
|
307 |
+
// Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
|
308 |
+
// In any case we don't expect seqlen_q to be larger than 64 for inference.
|
309 |
+
const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64;
|
310 |
+
params.num_splits = num_splits;
|
311 |
+
at::Tensor softmax_lse_accum;
|
312 |
+
at::Tensor out_accum;
|
313 |
+
|
314 |
+
if (p_dropout == 0.0f) { // SplitKV is not implemented for dropout
|
315 |
+
if (num_splits < 1) {
|
316 |
+
// We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block.
|
317 |
+
params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, num_sm * 2, num_n_blocks, 128);
|
318 |
+
}
|
319 |
+
if (params.num_splits > 1) {
|
320 |
+
softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
|
321 |
+
out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
|
322 |
+
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
|
323 |
+
params.oaccum_ptr = out_accum.data_ptr();
|
324 |
+
}
|
325 |
+
TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
|
326 |
+
}
|
327 |
+
|
328 |
+
return std::make_tuple(softmax_lse_accum, out_accum);
|
329 |
+
}
|
330 |
+
|
331 |
+
void set_params_alibi(Flash_fwd_params ¶ms, std::optional<at::Tensor> &alibi_slopes_, int batch_size, int num_heads){
|
332 |
+
#ifdef FLASHATTENTION_DISABLE_ALIBI
|
333 |
+
TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi.");
|
334 |
+
params.alibi_slopes_ptr = nullptr;
|
335 |
+
#else
|
336 |
+
if (alibi_slopes_.has_value()) {
|
337 |
+
auto alibi_slopes = alibi_slopes_.value();
|
338 |
+
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
|
339 |
+
CHECK_DEVICE(alibi_slopes);
|
340 |
+
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
|
341 |
+
TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
|
342 |
+
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
|
343 |
+
params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
|
344 |
+
} else {
|
345 |
+
params.alibi_slopes_ptr = nullptr;
|
346 |
+
}
|
347 |
+
#endif
|
348 |
+
}
|
349 |
+
|
350 |
+
std::vector<at::Tensor>
|
351 |
+
mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
352 |
+
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
353 |
+
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
354 |
+
std::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
355 |
+
std::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
356 |
+
const float p_dropout,
|
357 |
+
const float softmax_scale,
|
358 |
+
bool is_causal,
|
359 |
+
int window_size_left,
|
360 |
+
int window_size_right,
|
361 |
+
const float softcap,
|
362 |
+
const bool return_softmax,
|
363 |
+
std::optional<at::Generator> gen_) {
|
364 |
+
|
365 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
366 |
+
at::cuda::CUDAGuard device_guard{q.device()};
|
367 |
+
|
368 |
+
auto [cc_major, cc_minor] = get_compute_capability(get_current_device());
|
369 |
+
bool is_sm8x_min = cc_major >= 8;
|
370 |
+
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer.");
|
371 |
+
|
372 |
+
auto q_dtype = q.dtype();
|
373 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
374 |
+
"FlashAttention only support fp16 and bf16 data type");
|
375 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
376 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
377 |
+
|
378 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
379 |
+
|
380 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
381 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
382 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
383 |
+
|
384 |
+
const auto sizes = q.sizes();
|
385 |
+
|
386 |
+
const int batch_size = sizes[0];
|
387 |
+
int seqlen_q = sizes[1];
|
388 |
+
int num_heads = sizes[2];
|
389 |
+
const int head_size = sizes[3];
|
390 |
+
const int seqlen_k = k.size(1);
|
391 |
+
const int num_heads_k = k.size(2);
|
392 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
393 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256");
|
394 |
+
TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8");
|
395 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
396 |
+
|
397 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
398 |
+
|
399 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
400 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
401 |
+
|
402 |
+
// causal=true is the same as causal=false in this case
|
403 |
+
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
|
404 |
+
if (is_causal) { window_size_right = 0; }
|
405 |
+
|
406 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
407 |
+
// H/t Daniel Haziza
|
408 |
+
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value();
|
409 |
+
const int ngroups = num_heads / num_heads_k;
|
410 |
+
if (seqlenq_ngroups_swapped) {
|
411 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2);
|
412 |
+
seqlen_q = ngroups;
|
413 |
+
num_heads = num_heads_k;
|
414 |
+
}
|
415 |
+
|
416 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
|
417 |
+
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
|
418 |
+
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
|
419 |
+
|
420 |
+
at::Tensor out;
|
421 |
+
if (out_.has_value()) {
|
422 |
+
out = out_.value();
|
423 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
424 |
+
CHECK_DEVICE(out);
|
425 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
426 |
+
CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size);
|
427 |
+
if (seqlenq_ngroups_swapped) {
|
428 |
+
out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2);
|
429 |
+
}
|
430 |
+
} else {
|
431 |
+
out = torch::empty_like(q);
|
432 |
+
}
|
433 |
+
|
434 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
435 |
+
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256;
|
436 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
437 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
438 |
+
|
439 |
+
auto opts = q.options();
|
440 |
+
|
441 |
+
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
442 |
+
at::Tensor p;
|
443 |
+
// Only return softmax if there's dropout to reduce compilation time
|
444 |
+
if (return_softmax) {
|
445 |
+
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
|
446 |
+
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
|
447 |
+
}
|
448 |
+
else {
|
449 |
+
p = torch::empty({ 0 }, opts);
|
450 |
+
}
|
451 |
+
|
452 |
+
Flash_fwd_params params;
|
453 |
+
set_params_fprop(params,
|
454 |
+
batch_size,
|
455 |
+
seqlen_q, seqlen_k,
|
456 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
457 |
+
num_heads, num_heads_k,
|
458 |
+
head_size, head_size_rounded,
|
459 |
+
q, k, v, out,
|
460 |
+
/*cu_seqlens_q_d=*/nullptr,
|
461 |
+
/*cu_seqlens_k_d=*/nullptr,
|
462 |
+
/*seqused_k=*/nullptr,
|
463 |
+
return_softmax ? p.data_ptr() : nullptr,
|
464 |
+
softmax_lse.data_ptr(),
|
465 |
+
p_dropout,
|
466 |
+
softmax_scale,
|
467 |
+
window_size_left,
|
468 |
+
window_size_right,
|
469 |
+
softcap
|
470 |
+
);
|
471 |
+
|
472 |
+
// Keep references to these tensors to extend their lifetime
|
473 |
+
at::Tensor softmax_lse_accum, out_accum;
|
474 |
+
std::tie(softmax_lse_accum, out_accum) = set_params_splitkv(
|
475 |
+
params, batch_size, num_heads, head_size, seqlen_k, seqlen_q,
|
476 |
+
head_size_rounded, p_dropout, /*num_splits*/ 0, get_num_sm(get_current_device()), opts);
|
477 |
+
|
478 |
+
// number of times random will be generated per thread, to offset philox counter in thc random
|
479 |
+
// state
|
480 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
481 |
+
int64_t counter_offset = params.b * params.h * 32;
|
482 |
+
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
|
483 |
+
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
|
484 |
+
// Forward kernel will populate memory with the seed and offset.
|
485 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());
|
486 |
+
|
487 |
+
if (p_dropout > 0.0) {
|
488 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
489 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
490 |
+
// See Note [Acquire lock when using random generators]
|
491 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
492 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
493 |
+
}
|
494 |
+
|
495 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
496 |
+
|
497 |
+
if (seqlen_k > 0) {
|
498 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
499 |
+
run_mha_fwd(params, stream);
|
500 |
+
} else {
|
501 |
+
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
|
502 |
+
out.zero_();
|
503 |
+
softmax_lse.fill_(std::numeric_limits<float>::infinity());
|
504 |
+
}
|
505 |
+
|
506 |
+
if (seqlenq_ngroups_swapped) {
|
507 |
+
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size});
|
508 |
+
q = q.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size});
|
509 |
+
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
|
510 |
+
}
|
511 |
+
return {out, softmax_lse, p, rng_state};
|
512 |
+
}
|
513 |
+
|
514 |
+
std::vector<at::Tensor>
|
515 |
+
mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
516 |
+
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
517 |
+
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
518 |
+
std::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
519 |
+
const at::Tensor &cu_seqlens_q, // b+1
|
520 |
+
const at::Tensor &cu_seqlens_k, // b+1
|
521 |
+
std::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
|
522 |
+
std::optional<const at::Tensor> &leftpad_k_, // batch_size
|
523 |
+
std::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
524 |
+
std::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
525 |
+
int max_seqlen_q,
|
526 |
+
const int max_seqlen_k,
|
527 |
+
const float p_dropout,
|
528 |
+
const float softmax_scale,
|
529 |
+
const bool zero_tensors,
|
530 |
+
bool is_causal,
|
531 |
+
int window_size_left,
|
532 |
+
int window_size_right,
|
533 |
+
const float softcap,
|
534 |
+
const bool return_softmax,
|
535 |
+
std::optional<at::Generator> gen_) {
|
536 |
+
|
537 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
538 |
+
at::cuda::CUDAGuard device_guard{q.device()};
|
539 |
+
|
540 |
+
auto [cc_major, cc_minor] = get_compute_capability(get_current_device());
|
541 |
+
bool is_sm8x_min = cc_major >= 8;
|
542 |
+
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer.");
|
543 |
+
|
544 |
+
auto q_dtype = q.dtype();
|
545 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
546 |
+
"FlashAttention only support fp16 and bf16 data type");
|
547 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
548 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
549 |
+
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
|
550 |
+
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
|
551 |
+
|
552 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
553 |
+
CHECK_DEVICE(cu_seqlens_q);
|
554 |
+
CHECK_DEVICE(cu_seqlens_k);
|
555 |
+
|
556 |
+
at::Tensor block_table;
|
557 |
+
const bool paged_KV = block_table_.has_value();
|
558 |
+
if (paged_KV) {
|
559 |
+
block_table = block_table_.value();
|
560 |
+
CHECK_DEVICE(block_table);
|
561 |
+
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
562 |
+
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
|
563 |
+
}
|
564 |
+
|
565 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
566 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
567 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
568 |
+
CHECK_CONTIGUOUS(cu_seqlens_q);
|
569 |
+
CHECK_CONTIGUOUS(cu_seqlens_k);
|
570 |
+
|
571 |
+
const auto sizes = q.sizes();
|
572 |
+
|
573 |
+
const int batch_size = cu_seqlens_q.numel() - 1;
|
574 |
+
int num_heads = sizes[1];
|
575 |
+
const int head_size = sizes[2];
|
576 |
+
const int num_heads_k = paged_KV ? k.size(2) : k.size(1);
|
577 |
+
|
578 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
579 |
+
|
580 |
+
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
|
581 |
+
const int num_blocks = !paged_KV ? 0 : k.size(0);
|
582 |
+
const int page_block_size = !paged_KV ? 1 : k.size(1);
|
583 |
+
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
|
584 |
+
|
585 |
+
if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } // causal=true is the same as causal=false in this case
|
586 |
+
if (is_causal) { window_size_right = 0; }
|
587 |
+
|
588 |
+
void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();
|
589 |
+
|
590 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
591 |
+
// H/t Daniel Haziza
|
592 |
+
const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value();
|
593 |
+
const int ngroups = num_heads / num_heads_k;
|
594 |
+
if (seqlenq_ngroups_swapped) {
|
595 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size});
|
596 |
+
max_seqlen_q = ngroups;
|
597 |
+
num_heads = num_heads_k;
|
598 |
+
cu_seqlens_q_d = nullptr;
|
599 |
+
}
|
600 |
+
|
601 |
+
const int total_q = q.sizes()[0];
|
602 |
+
|
603 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
604 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256");
|
605 |
+
TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8");
|
606 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
607 |
+
|
608 |
+
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
|
609 |
+
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
|
610 |
+
|
611 |
+
CHECK_SHAPE(q, total_q, num_heads, head_size);
|
612 |
+
if (!paged_KV) {
|
613 |
+
const int total_k = k.size(0);
|
614 |
+
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
|
615 |
+
CHECK_SHAPE(v, total_k, num_heads_k, head_size);
|
616 |
+
} else {
|
617 |
+
CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size);
|
618 |
+
CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size);
|
619 |
+
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
620 |
+
}
|
621 |
+
|
622 |
+
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
|
623 |
+
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
|
624 |
+
if (seqused_k.has_value()){
|
625 |
+
auto seqused_k_ = seqused_k.value();
|
626 |
+
TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
|
627 |
+
TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
|
628 |
+
TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
|
629 |
+
CHECK_SHAPE(seqused_k_, batch_size);
|
630 |
+
}
|
631 |
+
|
632 |
+
at::Tensor out;
|
633 |
+
if (out_.has_value()) {
|
634 |
+
out = out_.value();
|
635 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
636 |
+
CHECK_DEVICE(out);
|
637 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
638 |
+
CHECK_SHAPE(out, sizes[0], sizes[1], head_size);
|
639 |
+
if (seqlenq_ngroups_swapped) {
|
640 |
+
out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size});
|
641 |
+
}
|
642 |
+
} else {
|
643 |
+
out = torch::empty_like(q);
|
644 |
+
}
|
645 |
+
|
646 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
647 |
+
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256;
|
648 |
+
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
|
649 |
+
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
|
650 |
+
|
651 |
+
auto opts = q.options();
|
652 |
+
auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
|
653 |
+
at::Tensor p;
|
654 |
+
// Only return softmax if there's dropout to reduce compilation time
|
655 |
+
if (return_softmax) {
|
656 |
+
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
|
657 |
+
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
|
658 |
+
}
|
659 |
+
else {
|
660 |
+
p = torch::empty({ 0 }, opts);
|
661 |
+
}
|
662 |
+
|
663 |
+
if (zero_tensors) {
|
664 |
+
out.zero_();
|
665 |
+
softmax_lse.fill_(-std::numeric_limits<float>::infinity());
|
666 |
+
if (return_softmax) {p.zero_();}
|
667 |
+
}
|
668 |
+
|
669 |
+
Flash_fwd_params params;
|
670 |
+
set_params_fprop(params,
|
671 |
+
batch_size,
|
672 |
+
max_seqlen_q, max_seqlen_k,
|
673 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
674 |
+
num_heads, num_heads_k,
|
675 |
+
head_size, head_size_rounded,
|
676 |
+
q, k, v, out,
|
677 |
+
cu_seqlens_q_d,
|
678 |
+
cu_seqlens_k.data_ptr(),
|
679 |
+
seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
|
680 |
+
return_softmax ? p.data_ptr() : nullptr,
|
681 |
+
softmax_lse.data_ptr(),
|
682 |
+
p_dropout,
|
683 |
+
softmax_scale,
|
684 |
+
window_size_left,
|
685 |
+
window_size_right,
|
686 |
+
softcap,
|
687 |
+
seqlenq_ngroups_swapped,
|
688 |
+
/*unpadded_lse*/true);
|
689 |
+
params.total_q = total_q;
|
690 |
+
|
691 |
+
if (paged_KV) {
|
692 |
+
params.block_table = block_table.data_ptr<int>();
|
693 |
+
params.block_table_batch_stride = block_table.stride(0);
|
694 |
+
params.k_batch_stride = k.stride(0);
|
695 |
+
params.v_batch_stride = v.stride(0);
|
696 |
+
}
|
697 |
+
params.page_block_size = page_block_size;
|
698 |
+
// Keep references to these tensors to extend their lifetime
|
699 |
+
at::Tensor softmax_lse_accum, out_accum;
|
700 |
+
if (seqlenq_ngroups_swapped) {
|
701 |
+
// Only apply split-k for decoding
|
702 |
+
std::tie(softmax_lse_accum, out_accum) =
|
703 |
+
set_params_splitkv(params, batch_size, num_heads, head_size,
|
704 |
+
max_seqlen_k, max_seqlen_q, head_size_rounded,
|
705 |
+
p_dropout, /*num_splits*/ 0, get_num_sm(get_current_device()), opts);
|
706 |
+
}
|
707 |
+
|
708 |
+
if (leftpad_k_.has_value()) {
|
709 |
+
auto leftpad_k = leftpad_k_.value();
|
710 |
+
TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet");
|
711 |
+
TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32");
|
712 |
+
CHECK_DEVICE(leftpad_k);
|
713 |
+
CHECK_CONTIGUOUS(leftpad_k);
|
714 |
+
CHECK_SHAPE(leftpad_k, batch_size);
|
715 |
+
params.leftpad_k = static_cast<int *>(leftpad_k.data_ptr());
|
716 |
+
}
|
717 |
+
|
718 |
+
// number of times random will be generated per thread, to offset philox counter in thc random
|
719 |
+
// state
|
720 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
721 |
+
int64_t counter_offset = params.b * params.h * 32;
|
722 |
+
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
|
723 |
+
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
|
724 |
+
// Forward kernel will populate memory with the seed and offset.
|
725 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());
|
726 |
+
|
727 |
+
if (p_dropout > 0.0) {
|
728 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
729 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
730 |
+
// See Note [Acquire lock when using random generators]
|
731 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
732 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
733 |
+
}
|
734 |
+
|
735 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
736 |
+
|
737 |
+
if (max_seqlen_k > 0) {
|
738 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
739 |
+
run_mha_fwd(params, stream, paged_KV);
|
740 |
+
} else {
|
741 |
+
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
|
742 |
+
out.zero_();
|
743 |
+
softmax_lse.fill_(std::numeric_limits<float>::infinity());
|
744 |
+
}
|
745 |
+
|
746 |
+
if (seqlenq_ngroups_swapped) {
|
747 |
+
int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size};
|
748 |
+
int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size};
|
749 |
+
out = out.reshape(size_before).transpose(1, 2).reshape(size_after);
|
750 |
+
q = q.reshape(size_before).transpose(1, 2).reshape(size_after);
|
751 |
+
softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size});
|
752 |
+
}
|
753 |
+
|
754 |
+
return {out, softmax_lse, p, rng_state};
|
755 |
+
}
|
756 |
+
|
757 |
+
void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
758 |
+
FP16_SWITCH(!params.is_bf16, [&] {
|
759 |
+
HEADDIM_SWITCH(params.d, [&] {
|
760 |
+
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
|
761 |
+
run_mha_bwd_<elem_type, kHeadDim, Is_causal>(params, stream);
|
762 |
+
});
|
763 |
+
});
|
764 |
+
});
|
765 |
+
}
|
766 |
+
|
767 |
+
std::vector<at::Tensor>
|
768 |
+
mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
769 |
+
const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
770 |
+
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
771 |
+
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
772 |
+
const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
773 |
+
const at::Tensor &softmax_lse, // b x h x seqlen_q
|
774 |
+
std::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
775 |
+
std::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
776 |
+
std::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
777 |
+
std::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
778 |
+
const float p_dropout, // probability to drop
|
779 |
+
const float softmax_scale,
|
780 |
+
const bool is_causal,
|
781 |
+
int window_size_left,
|
782 |
+
int window_size_right,
|
783 |
+
const float softcap,
|
784 |
+
const bool deterministic,
|
785 |
+
std::optional<at::Generator> gen_,
|
786 |
+
std::optional<at::Tensor> &rng_state) {
|
787 |
+
|
788 |
+
#ifdef FLASHATTENTION_DISABLE_BACKWARD
|
789 |
+
TORCH_CHECK(false, "This flash attention build does not support backward.");
|
790 |
+
#endif
|
791 |
+
if (is_causal) { window_size_right = 0; }
|
792 |
+
|
793 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
794 |
+
at::cuda::CUDAGuard device_guard{q.device()};
|
795 |
+
|
796 |
+
auto [cc_major, cc_minor] = get_compute_capability(get_current_device());
|
797 |
+
bool is_sm8x_min = cc_major >= 8;
|
798 |
+
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer.");
|
799 |
+
|
800 |
+
bool is_dropout = p_dropout > 0.0;
|
801 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
802 |
+
|
803 |
+
auto q_dtype = q.dtype();
|
804 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
805 |
+
"FlashAttention only support fp16 and bf16 data type");
|
806 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
807 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
808 |
+
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
|
809 |
+
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
|
810 |
+
|
811 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
812 |
+
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
|
813 |
+
|
814 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
815 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
816 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
817 |
+
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
|
818 |
+
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
|
819 |
+
|
820 |
+
const auto sizes = q.sizes();
|
821 |
+
|
822 |
+
const int batch_size = sizes[0];
|
823 |
+
const int seqlen_q = sizes[1];
|
824 |
+
const int num_heads = sizes[2];
|
825 |
+
const int head_size = sizes[3];
|
826 |
+
const int seqlen_k = k.size(1);
|
827 |
+
const int num_heads_k = k.size(2);
|
828 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
829 |
+
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
|
830 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
|
831 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
832 |
+
|
833 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
834 |
+
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256;
|
835 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
836 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
837 |
+
|
838 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
839 |
+
|
840 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
841 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
842 |
+
|
843 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
|
844 |
+
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
|
845 |
+
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
|
846 |
+
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
|
847 |
+
CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size);
|
848 |
+
|
849 |
+
at::Tensor dq, dk, dv;
|
850 |
+
if (dq_.has_value()) {
|
851 |
+
dq = dq_.value();
|
852 |
+
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
|
853 |
+
CHECK_DEVICE(dq);
|
854 |
+
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
|
855 |
+
CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
|
856 |
+
} else {
|
857 |
+
dq = torch::empty_like(q);
|
858 |
+
}
|
859 |
+
if (dk_.has_value()) {
|
860 |
+
dk = dk_.value();
|
861 |
+
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
|
862 |
+
CHECK_DEVICE(dk);
|
863 |
+
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
|
864 |
+
CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
|
865 |
+
} else {
|
866 |
+
dk = torch::empty_like(k);
|
867 |
+
}
|
868 |
+
if (dv_.has_value()) {
|
869 |
+
dv = dv_.value();
|
870 |
+
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
|
871 |
+
CHECK_DEVICE(dv);
|
872 |
+
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
|
873 |
+
CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
|
874 |
+
} else {
|
875 |
+
dv = torch::empty_like(v);
|
876 |
+
}
|
877 |
+
|
878 |
+
// bool loop = seqlen_k > blocksize_c;
|
879 |
+
// TODO: change later, for now set to true for simplicity
|
880 |
+
bool loop = true;
|
881 |
+
|
882 |
+
auto opts = q.options();
|
883 |
+
auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
|
884 |
+
at::Tensor dq_accum;
|
885 |
+
at::Tensor dk_accum, dv_accum;
|
886 |
+
if (loop) {
|
887 |
+
if (!deterministic) {
|
888 |
+
dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
889 |
+
} else {
|
890 |
+
const int nsplits = (get_num_sm(get_current_device()) + batch_size * num_heads - 1) / (batch_size * num_heads);
|
891 |
+
dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
892 |
+
}
|
893 |
+
// dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
|
894 |
+
// dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
|
895 |
+
}
|
896 |
+
|
897 |
+
at::Tensor dk_expanded, dv_expanded;
|
898 |
+
if (num_heads_k != num_heads) { // MQA / GQA
|
899 |
+
dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
|
900 |
+
dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
|
901 |
+
} else {
|
902 |
+
dk_expanded = dk;
|
903 |
+
dv_expanded = dv;
|
904 |
+
}
|
905 |
+
|
906 |
+
Flash_bwd_params params;
|
907 |
+
|
908 |
+
set_params_dgrad(params,
|
909 |
+
batch_size,
|
910 |
+
seqlen_q, seqlen_k,
|
911 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
912 |
+
num_heads, num_heads_k,
|
913 |
+
head_size, head_size_rounded,
|
914 |
+
q, k, v, out,
|
915 |
+
dout, dq, dk_expanded, dv_expanded,
|
916 |
+
nullptr,
|
917 |
+
nullptr,
|
918 |
+
loop ? dq_accum.data_ptr() : nullptr,
|
919 |
+
// loop ? dk_accum.data_ptr() : nullptr,
|
920 |
+
// loop ? dv_accum.data_ptr() : nullptr,
|
921 |
+
nullptr,
|
922 |
+
nullptr,
|
923 |
+
softmax_lse.data_ptr(),
|
924 |
+
softmax_d.data_ptr(),
|
925 |
+
p_dropout,
|
926 |
+
softmax_scale,
|
927 |
+
window_size_left,
|
928 |
+
window_size_right,
|
929 |
+
softcap,
|
930 |
+
deterministic,
|
931 |
+
/*unpadded_lse*/false);
|
932 |
+
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
|
933 |
+
|
934 |
+
auto launch = &run_mha_bwd;
|
935 |
+
|
936 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
937 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
938 |
+
|
939 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
940 |
+
int64_t counter_offset = params.b * params.h * 32;
|
941 |
+
|
942 |
+
if ( rng_state.has_value() ) {
|
943 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
|
944 |
+
} else if( is_dropout ) {
|
945 |
+
// See Note [Acquire lock when using random generators]
|
946 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
947 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
948 |
+
auto seeds = at::cuda::philox::unpack(params.philox_args);
|
949 |
+
params.rng_state[0] = std::get<0>(seeds);
|
950 |
+
params.rng_state[1] = std::get<1>(seeds);
|
951 |
+
}
|
952 |
+
|
953 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
954 |
+
|
955 |
+
if (seqlen_q > 0) {
|
956 |
+
launch(params, stream);
|
957 |
+
} else {
|
958 |
+
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
|
959 |
+
dk_expanded.zero_();
|
960 |
+
dv_expanded.zero_();
|
961 |
+
softmax_d.zero_();
|
962 |
+
}
|
963 |
+
|
964 |
+
// For MQA/GQA we need to sum dK and dV across the groups
|
965 |
+
if (num_heads_k != num_heads) {
|
966 |
+
at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
|
967 |
+
at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
|
968 |
+
}
|
969 |
+
|
970 |
+
return { dq, dk, dv, softmax_d };
|
971 |
+
}
|
972 |
+
|
973 |
+
std::vector<at::Tensor>
|
974 |
+
mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size
|
975 |
+
const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
976 |
+
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
977 |
+
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
978 |
+
const at::Tensor &out, // total_q x num_heads x head_size
|
979 |
+
const at::Tensor &softmax_lse, // h x total_q, softmax logsumexp
|
980 |
+
std::optional<at::Tensor> &dq_, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
981 |
+
std::optional<at::Tensor> &dk_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
982 |
+
std::optional<at::Tensor> &dv_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
983 |
+
const at::Tensor &cu_seqlens_q, // b+1
|
984 |
+
const at::Tensor &cu_seqlens_k, // b+1
|
985 |
+
std::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
986 |
+
const int max_seqlen_q,
|
987 |
+
const int max_seqlen_k, // max sequence length to choose the kernel
|
988 |
+
const float p_dropout, // probability to drop
|
989 |
+
const float softmax_scale,
|
990 |
+
const bool zero_tensors,
|
991 |
+
const bool is_causal,
|
992 |
+
int window_size_left,
|
993 |
+
int window_size_right,
|
994 |
+
const float softcap,
|
995 |
+
const bool deterministic,
|
996 |
+
std::optional<at::Generator> gen_,
|
997 |
+
std::optional<at::Tensor> &rng_state) {
|
998 |
+
|
999 |
+
#ifdef FLASHATTENTION_DISABLE_BACKWARD
|
1000 |
+
TORCH_CHECK(false, "This flash attention build does not support backward.");
|
1001 |
+
#endif
|
1002 |
+
if (is_causal) { window_size_right = 0; }
|
1003 |
+
|
1004 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
1005 |
+
at::cuda::CUDAGuard device_guard{q.device()};
|
1006 |
+
|
1007 |
+
auto [cc_major, cc_minor] = get_compute_capability(get_current_device());
|
1008 |
+
bool is_sm8x_min = cc_major >= 8;
|
1009 |
+
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer.");
|
1010 |
+
|
1011 |
+
bool is_dropout = p_dropout > 0.0;
|
1012 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
1013 |
+
|
1014 |
+
auto q_dtype = q.dtype();
|
1015 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
1016 |
+
"FlashAttention only support fp16 and bf16 data type");
|
1017 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
1018 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
1019 |
+
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
|
1020 |
+
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
|
1021 |
+
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
|
1022 |
+
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
|
1023 |
+
|
1024 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
1025 |
+
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
|
1026 |
+
CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
|
1027 |
+
|
1028 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1029 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1030 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1031 |
+
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
|
1032 |
+
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
|
1033 |
+
CHECK_CONTIGUOUS(cu_seqlens_q);
|
1034 |
+
CHECK_CONTIGUOUS(cu_seqlens_k);
|
1035 |
+
|
1036 |
+
const auto sizes = q.sizes();
|
1037 |
+
|
1038 |
+
const int total_q = sizes[0];
|
1039 |
+
const int batch_size = cu_seqlens_q.numel() - 1;
|
1040 |
+
const int num_heads = sizes[1];
|
1041 |
+
const int head_size = sizes[2];
|
1042 |
+
const int total_k = k.size(0);
|
1043 |
+
const int num_heads_k = k.size(1);
|
1044 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
1045 |
+
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
|
1046 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
|
1047 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
1048 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
1049 |
+
|
1050 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
1051 |
+
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256;
|
1052 |
+
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
|
1053 |
+
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
|
1054 |
+
|
1055 |
+
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
|
1056 |
+
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
|
1057 |
+
|
1058 |
+
CHECK_SHAPE(q, total_q, num_heads, head_size);
|
1059 |
+
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
|
1060 |
+
CHECK_SHAPE(v, total_k, num_heads_k, head_size);
|
1061 |
+
CHECK_SHAPE(out, total_q, num_heads, head_size);
|
1062 |
+
CHECK_SHAPE(dout, total_q, num_heads, head_size);
|
1063 |
+
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
|
1064 |
+
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
|
1065 |
+
|
1066 |
+
at::Tensor dq, dk, dv;
|
1067 |
+
if (dq_.has_value()) {
|
1068 |
+
dq = dq_.value();
|
1069 |
+
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
|
1070 |
+
CHECK_DEVICE(dq);
|
1071 |
+
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
|
1072 |
+
CHECK_SHAPE(dq, total_q, num_heads, head_size);
|
1073 |
+
} else {
|
1074 |
+
dq = torch::empty_like(q);
|
1075 |
+
}
|
1076 |
+
if (dk_.has_value()) {
|
1077 |
+
dk = dk_.value();
|
1078 |
+
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
|
1079 |
+
CHECK_DEVICE(dk);
|
1080 |
+
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
|
1081 |
+
CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
|
1082 |
+
} else {
|
1083 |
+
dk = torch::empty_like(k);
|
1084 |
+
}
|
1085 |
+
if (dv_.has_value()) {
|
1086 |
+
dv = dv_.value();
|
1087 |
+
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
|
1088 |
+
CHECK_DEVICE(dv);
|
1089 |
+
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
|
1090 |
+
CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
|
1091 |
+
} else {
|
1092 |
+
dv = torch::empty_like(v);
|
1093 |
+
}
|
1094 |
+
|
1095 |
+
// bool loop = max_seqlen_k > blocksize_c;
|
1096 |
+
// TODO: change later, for now set to true for simplicity
|
1097 |
+
bool loop = true;
|
1098 |
+
|
1099 |
+
auto opts = q.options();
|
1100 |
+
auto softmax_d = torch::empty({num_heads, total_q + 128 * batch_size}, opts.dtype(at::kFloat));
|
1101 |
+
at::Tensor dq_accum;
|
1102 |
+
if (loop) {
|
1103 |
+
// We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
|
1104 |
+
// because that would be too large if there is a very long sequence and the rest of the sequences are short.
|
1105 |
+
// Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
|
1106 |
+
// Note that 128 is the max block size on the seqlen_q dimension.
|
1107 |
+
// For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
|
1108 |
+
// cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
|
1109 |
+
// be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
|
1110 |
+
// allowed to do. So we won't have to do any bound checking, and performance should stay the same.
|
1111 |
+
// Same holds for softmax_d, since LSE is stored in unpadded format.
|
1112 |
+
if (!deterministic) {
|
1113 |
+
dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
1114 |
+
} else {
|
1115 |
+
const int nsplits = (get_num_sm(get_current_device()) + batch_size * num_heads - 1) / (batch_size * num_heads);
|
1116 |
+
dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
1117 |
+
}
|
1118 |
+
}
|
1119 |
+
|
1120 |
+
at::Tensor dk_expanded, dv_expanded;
|
1121 |
+
if (num_heads_k != num_heads) { // MQA / GQA
|
1122 |
+
dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
|
1123 |
+
dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
|
1124 |
+
} else {
|
1125 |
+
dk_expanded = dk;
|
1126 |
+
dv_expanded = dv;
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
if( zero_tensors ) {
|
1130 |
+
dq.zero_();
|
1131 |
+
dk_expanded.zero_();
|
1132 |
+
dv_expanded.zero_();
|
1133 |
+
softmax_d.zero_();
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
Flash_bwd_params params;
|
1137 |
+
|
1138 |
+
set_params_dgrad(params,
|
1139 |
+
batch_size,
|
1140 |
+
max_seqlen_q, max_seqlen_k,
|
1141 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
1142 |
+
num_heads, num_heads_k,
|
1143 |
+
head_size, head_size_rounded,
|
1144 |
+
q, k, v, out,
|
1145 |
+
dout, dq, dk_expanded, dv_expanded,
|
1146 |
+
cu_seqlens_q.data_ptr(),
|
1147 |
+
cu_seqlens_k.data_ptr(),
|
1148 |
+
loop ? dq_accum.data_ptr() : nullptr,
|
1149 |
+
nullptr,
|
1150 |
+
nullptr,
|
1151 |
+
softmax_lse.data_ptr(),
|
1152 |
+
softmax_d.data_ptr(),
|
1153 |
+
p_dropout,
|
1154 |
+
softmax_scale,
|
1155 |
+
window_size_left,
|
1156 |
+
window_size_right,
|
1157 |
+
softcap,
|
1158 |
+
deterministic,
|
1159 |
+
/*unpadded_lse*/true);
|
1160 |
+
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
|
1161 |
+
params.total_q = total_q;
|
1162 |
+
|
1163 |
+
auto launch = &run_mha_bwd;
|
1164 |
+
|
1165 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
1166 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
1167 |
+
|
1168 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
1169 |
+
int64_t counter_offset = params.b * params.h * 32;
|
1170 |
+
|
1171 |
+
if ( rng_state.has_value() ) {
|
1172 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
|
1173 |
+
} else if( is_dropout ) {
|
1174 |
+
// See Note [Acquire lock when using random generators]
|
1175 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
1176 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
1177 |
+
auto seeds = at::cuda::philox::unpack(params.philox_args);
|
1178 |
+
params.rng_state[0] = std::get<0>(seeds);
|
1179 |
+
params.rng_state[1] = std::get<1>(seeds);
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
1183 |
+
|
1184 |
+
if (max_seqlen_q > 0) {
|
1185 |
+
launch(params, stream);
|
1186 |
+
} else {
|
1187 |
+
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
|
1188 |
+
dk_expanded.zero_();
|
1189 |
+
dv_expanded.zero_();
|
1190 |
+
softmax_d.zero_();
|
1191 |
+
}
|
1192 |
+
|
1193 |
+
// For MQA/GQA we need to sum dK and dV across the groups
|
1194 |
+
if (num_heads_k != num_heads) {
|
1195 |
+
at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
|
1196 |
+
at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
|
1197 |
+
}
|
1198 |
+
|
1199 |
+
return { dq, dk, dv, softmax_d };
|
1200 |
+
}
|
1201 |
+
|
1202 |
+
std::vector<at::Tensor>
|
1203 |
+
mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
1204 |
+
const at::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
1205 |
+
const at::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
1206 |
+
std::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
|
1207 |
+
std::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
|
1208 |
+
std::optional<const at::Tensor> &seqlens_k_, // batch_size
|
1209 |
+
std::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
|
1210 |
+
std::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
|
1211 |
+
std::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
|
1212 |
+
std::optional<const at::Tensor> &leftpad_k_, // batch_size
|
1213 |
+
std::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
1214 |
+
std::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
1215 |
+
std::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
|
1216 |
+
const float softmax_scale,
|
1217 |
+
bool is_causal,
|
1218 |
+
int window_size_left,
|
1219 |
+
int window_size_right,
|
1220 |
+
const float softcap,
|
1221 |
+
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
|
1222 |
+
int num_splits
|
1223 |
+
) {
|
1224 |
+
|
1225 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
1226 |
+
at::cuda::CUDAGuard device_guard{q.device()};
|
1227 |
+
|
1228 |
+
auto [cc_major, cc_minor] = get_compute_capability(get_current_device());
|
1229 |
+
bool is_sm8x_min = cc_major >= 8;
|
1230 |
+
TORCH_CHECK(is_sm8x_min, "FlashAttention only supports Ampere GPUs or newer.");
|
1231 |
+
|
1232 |
+
auto q_dtype = q.dtype();
|
1233 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
1234 |
+
"FlashAttention only support fp16 and bf16 data type");
|
1235 |
+
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
|
1236 |
+
TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");
|
1237 |
+
|
1238 |
+
CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
|
1239 |
+
|
1240 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1241 |
+
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1242 |
+
TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
1243 |
+
|
1244 |
+
at::Tensor block_table;
|
1245 |
+
const bool paged_KV = block_table_.has_value();
|
1246 |
+
if (paged_KV) {
|
1247 |
+
TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
|
1248 |
+
block_table = block_table_.value();
|
1249 |
+
CHECK_DEVICE(block_table);
|
1250 |
+
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
1251 |
+
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
const auto sizes = q.sizes();
|
1255 |
+
|
1256 |
+
const int batch_size = sizes[0];
|
1257 |
+
int seqlen_q = sizes[1];
|
1258 |
+
int num_heads = sizes[2];
|
1259 |
+
const int head_size_og = sizes[3];
|
1260 |
+
|
1261 |
+
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
|
1262 |
+
const int num_blocks = !paged_KV ? 0 : kcache.size(0);
|
1263 |
+
const int page_block_size = !paged_KV ? 1 : kcache.size(1);
|
1264 |
+
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
|
1265 |
+
const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
|
1266 |
+
const int num_heads_k = kcache.size(2);
|
1267 |
+
const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
|
1268 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
1269 |
+
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
|
1270 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
1271 |
+
|
1272 |
+
// causal=true is the same as causal=false in this case
|
1273 |
+
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
|
1274 |
+
if (is_causal) { window_size_right = 0; }
|
1275 |
+
|
1276 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
1277 |
+
// H/t Daniel Haziza
|
1278 |
+
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
|
1279 |
+
if (seqlenq_ngroups_swapped) {
|
1280 |
+
const int ngroups = num_heads / num_heads_k;
|
1281 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
|
1282 |
+
seqlen_q = ngroups;
|
1283 |
+
num_heads = num_heads_k;
|
1284 |
+
}
|
1285 |
+
|
1286 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
1287 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
1288 |
+
|
1289 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
|
1290 |
+
if (!paged_KV) {
|
1291 |
+
CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
|
1292 |
+
CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
|
1293 |
+
} else {
|
1294 |
+
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
|
1295 |
+
CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
|
1296 |
+
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
1297 |
+
}
|
1298 |
+
|
1299 |
+
at::Tensor q_padded, kcache_padded, vcache_padded;
|
1300 |
+
if (head_size_og % 8 != 0) {
|
1301 |
+
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
1302 |
+
kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
1303 |
+
vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
1304 |
+
} else {
|
1305 |
+
q_padded = q;
|
1306 |
+
kcache_padded = kcache;
|
1307 |
+
vcache_padded = vcache;
|
1308 |
+
}
|
1309 |
+
|
1310 |
+
at::Tensor out;
|
1311 |
+
if (out_.has_value()) {
|
1312 |
+
out = out_.value();
|
1313 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
1314 |
+
CHECK_DEVICE(out);
|
1315 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
1316 |
+
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
|
1317 |
+
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
|
1318 |
+
} else {
|
1319 |
+
out = torch::empty_like(q_padded);
|
1320 |
+
}
|
1321 |
+
|
1322 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
1323 |
+
const int head_size = round_multiple(head_size_og, 8);
|
1324 |
+
const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256;
|
1325 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
1326 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
1327 |
+
|
1328 |
+
auto opts = q.options();
|
1329 |
+
|
1330 |
+
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
1331 |
+
|
1332 |
+
Flash_fwd_params params;
|
1333 |
+
set_params_fprop(params,
|
1334 |
+
batch_size,
|
1335 |
+
seqlen_q, seqlen_k,
|
1336 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
1337 |
+
num_heads, num_heads_k,
|
1338 |
+
head_size, head_size_rounded,
|
1339 |
+
q_padded, kcache_padded, vcache_padded, out,
|
1340 |
+
/*cu_seqlens_q_d=*/nullptr,
|
1341 |
+
/*cu_seqlens_k_d=*/nullptr,
|
1342 |
+
/*seqused_k=*/nullptr,
|
1343 |
+
/*p_ptr=*/nullptr,
|
1344 |
+
softmax_lse.data_ptr(),
|
1345 |
+
/*p_dropout=*/0.f,
|
1346 |
+
softmax_scale,
|
1347 |
+
window_size_left,
|
1348 |
+
window_size_right,
|
1349 |
+
softcap
|
1350 |
+
);
|
1351 |
+
|
1352 |
+
at::Tensor k, v, k_padded, v_padded;
|
1353 |
+
if (k_.has_value()) {
|
1354 |
+
TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
|
1355 |
+
TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
|
1356 |
+
TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
|
1357 |
+
k = k_.value();
|
1358 |
+
v = v_.value();
|
1359 |
+
TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
|
1360 |
+
TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
|
1361 |
+
CHECK_DEVICE(k); CHECK_DEVICE(v);
|
1362 |
+
TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
|
1363 |
+
TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
|
1364 |
+
int seqlen_knew = k.size(1);
|
1365 |
+
CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
|
1366 |
+
CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
|
1367 |
+
if (head_size_og % 8 != 0) {
|
1368 |
+
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
1369 |
+
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
1370 |
+
} else {
|
1371 |
+
k_padded = k;
|
1372 |
+
v_padded = v;
|
1373 |
+
}
|
1374 |
+
params.seqlen_knew = seqlen_knew;
|
1375 |
+
params.knew_ptr = k_padded.data_ptr();
|
1376 |
+
params.vnew_ptr = v_padded.data_ptr();
|
1377 |
+
// All stride are in elements, not bytes.
|
1378 |
+
params.knew_batch_stride = k_padded.stride(0);
|
1379 |
+
params.vnew_batch_stride = v_padded.stride(0);
|
1380 |
+
params.knew_row_stride = k_padded.stride(-3);
|
1381 |
+
params.vnew_row_stride = v_padded.stride(-3);
|
1382 |
+
params.knew_head_stride = k_padded.stride(-2);
|
1383 |
+
params.vnew_head_stride = v_padded.stride(-2);
|
1384 |
+
}
|
1385 |
+
|
1386 |
+
if (seqlens_k_.has_value()) {
|
1387 |
+
auto seqlens_k = seqlens_k_.value();
|
1388 |
+
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
|
1389 |
+
CHECK_DEVICE(seqlens_k);
|
1390 |
+
CHECK_CONTIGUOUS(seqlens_k);
|
1391 |
+
CHECK_SHAPE(seqlens_k, batch_size);
|
1392 |
+
params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
|
1393 |
+
}
|
1394 |
+
params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());
|
1395 |
+
if (leftpad_k_.has_value()) {
|
1396 |
+
TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet");
|
1397 |
+
auto leftpad_k = leftpad_k_.value();
|
1398 |
+
TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32");
|
1399 |
+
CHECK_DEVICE(leftpad_k);
|
1400 |
+
CHECK_CONTIGUOUS(leftpad_k);
|
1401 |
+
CHECK_SHAPE(leftpad_k, batch_size);
|
1402 |
+
params.leftpad_k = static_cast<int *>(leftpad_k.data_ptr());
|
1403 |
+
}
|
1404 |
+
|
1405 |
+
if (rotary_cos_.has_value()) {
|
1406 |
+
TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
|
1407 |
+
auto rotary_cos = rotary_cos_.value();
|
1408 |
+
CHECK_DEVICE(rotary_cos);
|
1409 |
+
params.rotary_dim = rotary_cos.size(1) * 2;
|
1410 |
+
TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
|
1411 |
+
TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
|
1412 |
+
const int seqlen_ro = rotary_cos.size(0);
|
1413 |
+
TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
|
1414 |
+
CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
|
1415 |
+
CHECK_CONTIGUOUS(rotary_cos);
|
1416 |
+
TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
|
1417 |
+
|
1418 |
+
TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
|
1419 |
+
auto rotary_sin = rotary_sin_.value();
|
1420 |
+
CHECK_DEVICE(rotary_sin);
|
1421 |
+
CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
|
1422 |
+
CHECK_CONTIGUOUS(rotary_sin);
|
1423 |
+
TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
|
1424 |
+
params.rotary_cos_ptr = rotary_cos.data_ptr();
|
1425 |
+
params.rotary_sin_ptr = rotary_sin.data_ptr();
|
1426 |
+
params.is_rotary_interleaved = is_rotary_interleaved;
|
1427 |
+
} else {
|
1428 |
+
params.rotary_dim = 0;
|
1429 |
+
}
|
1430 |
+
|
1431 |
+
if (cache_batch_idx_.has_value()) {
|
1432 |
+
auto cache_batch_idx = cache_batch_idx_.value();
|
1433 |
+
CHECK_DEVICE(cache_batch_idx);
|
1434 |
+
CHECK_CONTIGUOUS(cache_batch_idx);
|
1435 |
+
TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
|
1436 |
+
params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
|
1437 |
+
}
|
1438 |
+
|
1439 |
+
// Keep references to these tensors to extend their lifetime
|
1440 |
+
at::Tensor softmax_lse_accum, out_accum;
|
1441 |
+
std::tie(softmax_lse_accum, out_accum) = set_params_splitkv(
|
1442 |
+
params, batch_size, num_heads, head_size, seqlen_k, seqlen_q,
|
1443 |
+
head_size_rounded, /*dropout*/ 0.f, num_splits, get_num_sm(get_current_device()), opts);
|
1444 |
+
|
1445 |
+
if (paged_KV) {
|
1446 |
+
params.block_table = block_table.data_ptr<int>();
|
1447 |
+
params.block_table_batch_stride = block_table.stride(0);
|
1448 |
+
}
|
1449 |
+
params.page_block_size = page_block_size;
|
1450 |
+
|
1451 |
+
|
1452 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
1453 |
+
|
1454 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
1455 |
+
// Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
|
1456 |
+
// or paged KV cache
|
1457 |
+
run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV);
|
1458 |
+
|
1459 |
+
if (head_size_og % 8 != 0) {
|
1460 |
+
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
1461 |
+
if (out_.has_value()) { out_.value().copy_(out); }
|
1462 |
+
if (k_.has_value()) {
|
1463 |
+
// It's expensive to copy the KV cache here for the case where head size not divisible by 8,
|
1464 |
+
// but we don't expect to get this case in practice. This is just so that the code works for that case.
|
1465 |
+
kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
|
1466 |
+
vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
|
1467 |
+
}
|
1468 |
+
}
|
1469 |
+
|
1470 |
+
if (seqlenq_ngroups_swapped) {
|
1471 |
+
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
|
1472 |
+
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
|
1473 |
+
}
|
1474 |
+
return {out, softmax_lse};
|
1475 |
+
}
|
1476 |
+
} // namespace FLASH_NAMESPACE
|
1477 |
+
|
1478 |
+
// NOTE: wrap the namespaced functions so all types are doubles and longs
|
1479 |
+
std::vector<at::Tensor>
|
1480 |
+
mha_fwd(const at::Tensor &q, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
1481 |
+
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
1482 |
+
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
1483 |
+
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
1484 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
1485 |
+
const double p_dropout,
|
1486 |
+
const double softmax_scale,
|
1487 |
+
bool is_causal,
|
1488 |
+
const int64_t window_size_left,
|
1489 |
+
const int64_t window_size_right,
|
1490 |
+
const double softcap,
|
1491 |
+
const bool return_softmax,
|
1492 |
+
const c10::optional<at::Generator> gen_) {
|
1493 |
+
// return FLASH_NAMESPACE::mha_fwd(q, k, v, out_, alibi_slopes_, p_dropout, softmax_scale, is_causal, window_size_left, window_size_right, softcap, return_softmax, gen_);
|
1494 |
+
// return dummy value for now
|
1495 |
+
return {};
|
1496 |
+
};
|
flash_attn/src/alibi.h
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cmath>
|
2 |
+
|
3 |
+
#include "namespace_config.h"
|
4 |
+
#include <cute/tensor.hpp>
|
5 |
+
|
6 |
+
#include <cutlass/cutlass.h>
|
7 |
+
#include <cutlass/array.h>
|
8 |
+
|
9 |
+
#include "utils.h"
|
10 |
+
|
11 |
+
namespace FLASH_NAMESPACE {
|
12 |
+
|
13 |
+
using namespace cute;
|
14 |
+
|
15 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
16 |
+
|
17 |
+
template <bool Is_causal>
|
18 |
+
struct Alibi {
|
19 |
+
|
20 |
+
const float alibi_slope;
|
21 |
+
const int max_seqlen_k, max_seqlen_q;
|
22 |
+
|
23 |
+
__forceinline__ __device__ Alibi(const float alibi_slope, const int max_seqlen_k, const int max_seqlen_q)
|
24 |
+
: alibi_slope(alibi_slope)
|
25 |
+
, max_seqlen_k(max_seqlen_k)
|
26 |
+
, max_seqlen_q(max_seqlen_q) {
|
27 |
+
};
|
28 |
+
|
29 |
+
|
30 |
+
template <typename Engine, typename Layout>
|
31 |
+
__forceinline__ __device__ void apply_alibi(Tensor<Engine, Layout> &tensor,
|
32 |
+
const int col_idx_offset_,
|
33 |
+
const int row_idx_offset,
|
34 |
+
const int warp_row_stride) {
|
35 |
+
// tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
36 |
+
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
37 |
+
const int lane_id = threadIdx.x % 32;
|
38 |
+
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
39 |
+
if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows
|
40 |
+
#pragma unroll
|
41 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
42 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
43 |
+
#pragma unroll
|
44 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
45 |
+
const int col_idx = col_idx_base + j;
|
46 |
+
#pragma unroll
|
47 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
48 |
+
tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx;
|
49 |
+
}
|
50 |
+
}
|
51 |
+
}
|
52 |
+
} else { // Bias depends on both row_idx and col_idx
|
53 |
+
#pragma unroll
|
54 |
+
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
|
55 |
+
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
|
56 |
+
#pragma unroll
|
57 |
+
for (int i = 0; i < size<0, 0>(tensor); ++i) {
|
58 |
+
const int row_idx = row_idx_base + i * 8;
|
59 |
+
#pragma unroll
|
60 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
61 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
62 |
+
#pragma unroll
|
63 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
64 |
+
const int col_idx = col_idx_base + j;
|
65 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
};
|
74 |
+
|
75 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/block_info.h
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
namespace FLASH_NAMESPACE {
|
9 |
+
|
10 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
11 |
+
|
12 |
+
template<bool Varlen=true>
|
13 |
+
struct BlockInfo {
|
14 |
+
|
15 |
+
template<typename Params>
|
16 |
+
__device__ BlockInfo(const Params ¶ms, const int bidb)
|
17 |
+
: sum_s_q(!Varlen || params.cu_seqlens_q == nullptr ? -1 : params.cu_seqlens_q[bidb])
|
18 |
+
, sum_s_k(!Varlen || params.cu_seqlens_k == nullptr || !params.is_seqlens_k_cumulative ? -1 : params.cu_seqlens_k[bidb])
|
19 |
+
, actual_seqlen_q(!Varlen || params.cu_seqlens_q == nullptr ? params.seqlen_q : params.cu_seqlens_q[bidb + 1] - sum_s_q)
|
20 |
+
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
|
21 |
+
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
|
22 |
+
, leftpad_k(params.leftpad_k == nullptr ? 0 : params.leftpad_k[bidb])
|
23 |
+
, seqlen_k_cache((!Varlen || params.cu_seqlens_k == nullptr ? params.seqlen_k : (params.is_seqlens_k_cumulative ? params.cu_seqlens_k[bidb + 1] - sum_s_k : params.cu_seqlens_k[bidb])) - leftpad_k)
|
24 |
+
, actual_seqlen_k(params.seqused_k ? params.seqused_k[bidb] - leftpad_k : seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew))
|
25 |
+
{
|
26 |
+
}
|
27 |
+
|
28 |
+
template <typename index_t>
|
29 |
+
__forceinline__ __device__ index_t q_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
|
30 |
+
return sum_s_q == -1 ? bidb * batch_stride : uint32_t(sum_s_q) * row_stride;
|
31 |
+
}
|
32 |
+
|
33 |
+
template <typename index_t>
|
34 |
+
__forceinline__ __device__ index_t k_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
|
35 |
+
return sum_s_k == -1 ? bidb * batch_stride + leftpad_k * row_stride : uint32_t(sum_s_k + leftpad_k) * row_stride;
|
36 |
+
}
|
37 |
+
|
38 |
+
const int sum_s_q;
|
39 |
+
const int sum_s_k;
|
40 |
+
const int actual_seqlen_q;
|
41 |
+
// We have to have seqlen_k_cache declared before actual_seqlen_k, otherwise actual_seqlen_k is set to 0.
|
42 |
+
const int leftpad_k;
|
43 |
+
const int seqlen_k_cache;
|
44 |
+
const int actual_seqlen_k;
|
45 |
+
};
|
46 |
+
|
47 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
48 |
+
|
49 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/dropout.h
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2024, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
#include "philox.cuh"
|
9 |
+
#include "utils.h"
|
10 |
+
|
11 |
+
namespace FLASH_NAMESPACE {
|
12 |
+
|
13 |
+
struct Dropout {
|
14 |
+
|
15 |
+
const unsigned long long seed, offset;
|
16 |
+
const uint8_t p_dropout_in_uint8_t;
|
17 |
+
|
18 |
+
__forceinline__ __device__ Dropout(const unsigned long long seed, const unsigned long long offset,
|
19 |
+
const uint8_t p_dropout_in_uint8_t,
|
20 |
+
const int bid, const int hid, const int tid, const int nheads)
|
21 |
+
: seed(seed)
|
22 |
+
, offset(offset + (bid * nheads + hid) * 32 + tid % 32)
|
23 |
+
, p_dropout_in_uint8_t(p_dropout_in_uint8_t) {
|
24 |
+
}
|
25 |
+
|
26 |
+
template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout>
|
27 |
+
__forceinline__ __device__ void apply_dropout(Tensor<Engine, Layout> &tensor_,
|
28 |
+
int block_row_start, int block_col_start, int block_row_stride) {
|
29 |
+
// convert shape from (4, MMA_M, MMA_N) to (8, MMA_M, MMA_N / 2)
|
30 |
+
Tensor tensor = make_tensor(tensor_.data(), FLASH_NAMESPACE::convert_layout_acc_dropout(tensor_.layout()));
|
31 |
+
using T = typename Engine::value_type;
|
32 |
+
auto encode_dropout = [](bool keep, T val) {
|
33 |
+
return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0));
|
34 |
+
};
|
35 |
+
static_assert(decltype(size<2>(tensor))::value % 2 == 0);
|
36 |
+
const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t);
|
37 |
+
const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t);
|
38 |
+
// if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); }
|
39 |
+
#pragma unroll
|
40 |
+
for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) {
|
41 |
+
uint2 rowcol = make_uint2(block_row_start, block_col_start);
|
42 |
+
#pragma unroll
|
43 |
+
for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) {
|
44 |
+
// if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));}
|
45 |
+
uint4 random_uint4 = FLASH_NAMESPACE::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset);
|
46 |
+
// if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);}
|
47 |
+
uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4);
|
48 |
+
// Special implementation for 16-bit types: we duplicate the threshold to the
|
49 |
+
// low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction
|
50 |
+
// to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000,
|
51 |
+
// and the high 16 bits will be either 0xffff or 0x0000, depending on whether
|
52 |
+
// the random value is less than the threshold.
|
53 |
+
// We then do a bit-wise AND between the mask and the original value (in 32-bit).
|
54 |
+
// We're exploiting the fact that floating point comparison is equivalent to integer
|
55 |
+
// comparison, since we're comparing unsigned integers whose top 8-bits are zero.
|
56 |
+
if (!encode_dropout_in_sign_bit
|
57 |
+
&& (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) {
|
58 |
+
uint16_t rnd_16[16];
|
59 |
+
#pragma unroll
|
60 |
+
for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); }
|
61 |
+
uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16);
|
62 |
+
#pragma unroll
|
63 |
+
for (int j = 0; j < 2; j++) {
|
64 |
+
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
|
65 |
+
// if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); }
|
66 |
+
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
67 |
+
#pragma unroll
|
68 |
+
for (int i = 0; i < 4; i++) {
|
69 |
+
uint32_t mask;
|
70 |
+
asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t));
|
71 |
+
tensor_uint32(i) &= mask;
|
72 |
+
}
|
73 |
+
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
74 |
+
}
|
75 |
+
} else {
|
76 |
+
#pragma unroll
|
77 |
+
for (int j = 0; j < 2; j++) {
|
78 |
+
#pragma unroll
|
79 |
+
for (int i = 0; i < 8; i++) {
|
80 |
+
tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j));
|
81 |
+
}
|
82 |
+
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
|
83 |
+
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
84 |
+
}
|
85 |
+
}
|
86 |
+
// // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
|
87 |
+
// // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w);
|
88 |
+
// // }
|
89 |
+
}
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
};
|
94 |
+
|
95 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash.h
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
|
9 |
+
#include <cuda.h>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
#include <ATen/cuda/CUDAGeneratorImpl.h> // For at::Generator and at::PhiloxCudaState
|
13 |
+
|
14 |
+
namespace FLASH_NAMESPACE {
|
15 |
+
constexpr int TOTAL_DIM = 0;
|
16 |
+
constexpr int H_DIM = 1;
|
17 |
+
constexpr int D_DIM = 2;
|
18 |
+
|
19 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
20 |
+
|
21 |
+
struct Qkv_params {
|
22 |
+
using index_t = int64_t;
|
23 |
+
// The QKV matrices.
|
24 |
+
void *__restrict__ q_ptr;
|
25 |
+
void *__restrict__ k_ptr;
|
26 |
+
void *__restrict__ v_ptr;
|
27 |
+
|
28 |
+
// The stride between rows of the Q, K and V matrices.
|
29 |
+
index_t q_batch_stride;
|
30 |
+
index_t k_batch_stride;
|
31 |
+
index_t v_batch_stride;
|
32 |
+
index_t q_row_stride;
|
33 |
+
index_t k_row_stride;
|
34 |
+
index_t v_row_stride;
|
35 |
+
index_t q_head_stride;
|
36 |
+
index_t k_head_stride;
|
37 |
+
index_t v_head_stride;
|
38 |
+
|
39 |
+
// The number of heads.
|
40 |
+
int h, h_k;
|
41 |
+
// In the case of multi-query and grouped-query attention (MQA/GQA), nheads_k could be
|
42 |
+
// different from nheads (query).
|
43 |
+
int h_h_k_ratio; // precompute h / h_k,
|
44 |
+
};
|
45 |
+
|
46 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
47 |
+
|
48 |
+
struct Flash_fwd_params : public Qkv_params {
|
49 |
+
|
50 |
+
// The O matrix (output).
|
51 |
+
void * __restrict__ o_ptr;
|
52 |
+
void * __restrict__ oaccum_ptr;
|
53 |
+
|
54 |
+
// The stride between rows of O.
|
55 |
+
index_t o_batch_stride;
|
56 |
+
index_t o_row_stride;
|
57 |
+
index_t o_head_stride;
|
58 |
+
|
59 |
+
// The pointer to the P matrix.
|
60 |
+
void * __restrict__ p_ptr;
|
61 |
+
|
62 |
+
// The pointer to the softmax sum.
|
63 |
+
void * __restrict__ softmax_lse_ptr;
|
64 |
+
void * __restrict__ softmax_lseaccum_ptr;
|
65 |
+
|
66 |
+
// The dimensions.
|
67 |
+
int b, seqlen_q, seqlen_k, seqlen_knew, d, seqlen_q_rounded, seqlen_k_rounded, d_rounded, rotary_dim, total_q;
|
68 |
+
|
69 |
+
// The scaling factors for the kernel.
|
70 |
+
float scale_softmax;
|
71 |
+
float scale_softmax_log2;
|
72 |
+
|
73 |
+
// array of length b+1 holding starting offset of each sequence.
|
74 |
+
int * __restrict__ cu_seqlens_q;
|
75 |
+
int * __restrict__ cu_seqlens_k;
|
76 |
+
int * __restrict__ leftpad_k;
|
77 |
+
|
78 |
+
// If provided, the actual length of each k sequence.
|
79 |
+
int * __restrict__ seqused_k;
|
80 |
+
|
81 |
+
int *__restrict__ blockmask;
|
82 |
+
|
83 |
+
// The K_new and V_new matrices.
|
84 |
+
void * __restrict__ knew_ptr;
|
85 |
+
void * __restrict__ vnew_ptr;
|
86 |
+
|
87 |
+
// The stride between rows of the Q, K and V matrices.
|
88 |
+
index_t knew_batch_stride;
|
89 |
+
index_t vnew_batch_stride;
|
90 |
+
index_t knew_row_stride;
|
91 |
+
index_t vnew_row_stride;
|
92 |
+
index_t knew_head_stride;
|
93 |
+
index_t vnew_head_stride;
|
94 |
+
|
95 |
+
// The cos and sin matrices for rotary embedding.
|
96 |
+
void * __restrict__ rotary_cos_ptr;
|
97 |
+
void * __restrict__ rotary_sin_ptr;
|
98 |
+
|
99 |
+
// The indices to index into the KV cache.
|
100 |
+
int * __restrict__ cache_batch_idx;
|
101 |
+
|
102 |
+
// Paged KV cache
|
103 |
+
int * __restrict__ block_table;
|
104 |
+
index_t block_table_batch_stride;
|
105 |
+
int page_block_size;
|
106 |
+
|
107 |
+
// The dropout probability (probability of keeping an activation).
|
108 |
+
float p_dropout;
|
109 |
+
// uint32_t p_dropout_in_uint;
|
110 |
+
// uint16_t p_dropout_in_uint16_t;
|
111 |
+
uint8_t p_dropout_in_uint8_t;
|
112 |
+
|
113 |
+
// Scale factor of 1 / (1 - p_dropout).
|
114 |
+
float rp_dropout;
|
115 |
+
float scale_softmax_rp_dropout;
|
116 |
+
|
117 |
+
// Local window size
|
118 |
+
int window_size_left, window_size_right;
|
119 |
+
float softcap;
|
120 |
+
|
121 |
+
// Random state.
|
122 |
+
at::PhiloxCudaState philox_args;
|
123 |
+
|
124 |
+
// Pointer to the RNG seed (idx 0) and offset (idx 1).
|
125 |
+
uint64_t * rng_state;
|
126 |
+
|
127 |
+
bool is_bf16;
|
128 |
+
bool is_causal;
|
129 |
+
|
130 |
+
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
|
131 |
+
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
|
132 |
+
bool is_seqlens_k_cumulative;
|
133 |
+
|
134 |
+
bool is_rotary_interleaved;
|
135 |
+
|
136 |
+
int num_splits; // For split-KV version
|
137 |
+
|
138 |
+
void * __restrict__ alibi_slopes_ptr;
|
139 |
+
index_t alibi_slopes_batch_stride;
|
140 |
+
|
141 |
+
bool unpadded_lse; // For varlen paths: LSE is in [nheads, total_seqlen_q] format instead of [b, nheads, seqlen_q].
|
142 |
+
bool seqlenq_ngroups_swapped; // q has been transposed from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d).
|
143 |
+
};
|
144 |
+
|
145 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
146 |
+
|
147 |
+
struct Flash_bwd_params : public Flash_fwd_params {
|
148 |
+
|
149 |
+
// The dO and dQKV matrices.
|
150 |
+
void *__restrict__ do_ptr;
|
151 |
+
void *__restrict__ dq_ptr;
|
152 |
+
void *__restrict__ dk_ptr;
|
153 |
+
void *__restrict__ dv_ptr;
|
154 |
+
|
155 |
+
// To accumulate dQ
|
156 |
+
void *__restrict__ dq_accum_ptr;
|
157 |
+
void *__restrict__ dk_accum_ptr;
|
158 |
+
void *__restrict__ dv_accum_ptr;
|
159 |
+
|
160 |
+
// // To accumulate dK and dV in case we're splitting the bwd along seqlen_q
|
161 |
+
// dimension void *__restrict__ dk_accum_ptr; void *__restrict__
|
162 |
+
// dv_accum_ptr;
|
163 |
+
|
164 |
+
// The stride between rows of the dO, dQ, dK and dV matrices.
|
165 |
+
// TD [2022-04-16]: We're using 32-bit indexing to save registers.
|
166 |
+
// The code probably won't work for arrays larger than 2GB.
|
167 |
+
index_t do_batch_stride;
|
168 |
+
index_t do_row_stride;
|
169 |
+
index_t do_head_stride;
|
170 |
+
index_t dq_batch_stride;
|
171 |
+
index_t dk_batch_stride;
|
172 |
+
index_t dv_batch_stride;
|
173 |
+
index_t dq_row_stride;
|
174 |
+
index_t dk_row_stride;
|
175 |
+
index_t dv_row_stride;
|
176 |
+
index_t dq_head_stride;
|
177 |
+
index_t dk_head_stride;
|
178 |
+
index_t dv_head_stride;
|
179 |
+
|
180 |
+
// The pointer to the softmax d sum.
|
181 |
+
void *__restrict__ dsoftmax_sum;
|
182 |
+
|
183 |
+
bool deterministic;
|
184 |
+
index_t dq_accum_split_stride;
|
185 |
+
};
|
186 |
+
|
187 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
188 |
+
|
189 |
+
template<typename T, int Headdim, bool Is_causal> void run_mha_fwd_(Flash_fwd_params ¶ms, cudaStream_t stream);
|
190 |
+
template<typename T, int Headdim, bool Is_causal> void run_mha_fwd_splitkv_dispatch(Flash_fwd_params ¶ms, cudaStream_t stream);
|
191 |
+
|
192 |
+
template<typename T, int Headdim, bool Is_causal> void run_mha_bwd_(Flash_bwd_params ¶ms, cudaStream_t stream);
|
193 |
+
|
194 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 128, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim128<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 128, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim128<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 128, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim128<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 128, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim128<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim160_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 160, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim160<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 160, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim160<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim160_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 160, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim160<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 160, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim160<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim192_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 192, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim192<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 192, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim192<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim192_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 192, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim192<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 192, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim192<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim256_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 256, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim256<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 256, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim256<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim256_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 256, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim256<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 256, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim256<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim32_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 32, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim32<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 32, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim32<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim32_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 32, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim32<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 32, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim32<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim64_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 64, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim64<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 64, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim64<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim64_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 64, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim64<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 64, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim64<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim96_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 96, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim96<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::bfloat16_t, 96, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim96<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim96_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 96, true>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim96<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_bwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_bwd_<cutlass::half_t, 96, false>(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_bwd_hdim96<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_bwd_kernel.h
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2024, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
#include <cute/tensor.hpp>
|
9 |
+
|
10 |
+
#include <cutlass/cutlass.h>
|
11 |
+
#include <cutlass/array.h>
|
12 |
+
#include <cutlass/numeric_types.h>
|
13 |
+
|
14 |
+
#include "block_info.h"
|
15 |
+
#include "kernel_traits.h"
|
16 |
+
#include "utils.h"
|
17 |
+
#include "softmax.h"
|
18 |
+
#include "mask.h"
|
19 |
+
#include "dropout.h"
|
20 |
+
|
21 |
+
#include "alibi.h"
|
22 |
+
|
23 |
+
namespace FLASH_NAMESPACE {
|
24 |
+
|
25 |
+
using namespace cute;
|
26 |
+
|
27 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
28 |
+
|
29 |
+
template <int MMA_N,
|
30 |
+
class... Args,
|
31 |
+
class TiledMMA>
|
32 |
+
CUTE_HOST_DEVICE
|
33 |
+
auto
|
34 |
+
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
|
35 |
+
TiledMMA const& tiled_mma) {
|
36 |
+
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
|
37 |
+
constexpr int TileShape_K = decltype(tiled_mma.template tile_size_mnk<2>())::value;
|
38 |
+
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
39 |
+
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
|
40 |
+
// Divide by 2 because right now we always use 2 for the ValLayout
|
41 |
+
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
|
42 |
+
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
|
43 |
+
// This gives the correct layout, idk why.
|
44 |
+
// auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
|
45 |
+
// Stride<Stride<_1, _64>, _8> >{},
|
46 |
+
// auto t = make_tile(Layout<Shape<_8, _2, _2>,
|
47 |
+
// Stride<_1, _64, _8> >{},
|
48 |
+
auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
|
49 |
+
Stride<_1, Int<MMAStride_N>, _8> >{}, // (1, 64, 8) or (1, 32, 8)
|
50 |
+
make_layout(Int<TileShape_K>{}));
|
51 |
+
// if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n"); }
|
52 |
+
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
|
53 |
+
}
|
54 |
+
|
55 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
template <int MMA_N,
|
58 |
+
class... Args,
|
59 |
+
class TiledMMA>
|
60 |
+
CUTE_HOST_DEVICE
|
61 |
+
auto
|
62 |
+
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
|
63 |
+
TiledMMA const& tiled_mma) {
|
64 |
+
constexpr int TileShape_M = decltype(tiled_mma.template tile_size_mnk<0>())::value;
|
65 |
+
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
|
66 |
+
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
67 |
+
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
|
68 |
+
// Divide by 2 because right now we always use 2 for the ValLayout
|
69 |
+
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
|
70 |
+
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
|
71 |
+
auto t = make_tile(make_layout(Int<TileShape_M>{}),
|
72 |
+
Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
|
73 |
+
Stride<_1, Int<MMAStride_N>, _8> >{}); // (1, 64, 8) or (1, 32, 8)
|
74 |
+
// if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n"); }
|
75 |
+
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
|
76 |
+
}
|
77 |
+
|
78 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
79 |
+
|
80 |
+
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
|
81 |
+
inline __device__ void compute_dq_dk_dv_1colblock(const Params ¶ms, const int bidb, const int bidh, const int n_block) {
|
82 |
+
|
83 |
+
using Element = typename Kernel_traits::Element;
|
84 |
+
using ElementAccum = typename Kernel_traits::ElementAccum;
|
85 |
+
using index_t = typename Kernel_traits::index_t;
|
86 |
+
|
87 |
+
// Shared memory.
|
88 |
+
extern __shared__ char smem_[];
|
89 |
+
|
90 |
+
// The thread index.
|
91 |
+
const int tidx = threadIdx.x;
|
92 |
+
|
93 |
+
constexpr int kBlockM = Kernel_traits::kBlockM;
|
94 |
+
constexpr int kBlockN = Kernel_traits::kBlockN;
|
95 |
+
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
96 |
+
constexpr int MMA_N_SdP = kBlockN / decltype(typename Kernel_traits::TiledMmaSdP{}.template tile_size_mnk<1>())::value;
|
97 |
+
constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
|
98 |
+
constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;
|
99 |
+
|
100 |
+
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
|
101 |
+
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
|
102 |
+
|
103 |
+
int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
|
104 |
+
if (Is_local) {
|
105 |
+
m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
|
106 |
+
}
|
107 |
+
|
108 |
+
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
|
109 |
+
+ (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
|
110 |
+
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
|
111 |
+
+ n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
|
112 |
+
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
|
113 |
+
+ n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
|
114 |
+
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
|
115 |
+
+ (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
|
116 |
+
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
117 |
+
+ (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
118 |
+
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
|
119 |
+
+ (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
|
120 |
+
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
|
121 |
+
+ ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
|
122 |
+
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
|
123 |
+
+ (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
|
124 |
+
const index_t row_offset_lse = (params.unpadded_lse? bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb): (bidb * params.h + bidh) * params.seqlen_q) + (m_block_max - 1) * kBlockM;
|
125 |
+
// Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
|
126 |
+
const index_t row_offset_dpsum = (params.unpadded_lse? bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb: (bidb * params.h + bidh) * params.seqlen_q_rounded) + (m_block_max - 1) * kBlockM;
|
127 |
+
|
128 |
+
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
|
129 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
130 |
+
make_stride(params.q_row_stride, _1{}));
|
131 |
+
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
|
132 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
133 |
+
make_stride(params.k_row_stride, _1{}));
|
134 |
+
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
|
135 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
136 |
+
make_stride(params.v_row_stride, _1{}));
|
137 |
+
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
|
138 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
139 |
+
make_stride(params.do_row_stride, _1{}));
|
140 |
+
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
|
141 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
142 |
+
make_stride(params.o_row_stride, _1{}));
|
143 |
+
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
|
144 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
145 |
+
make_stride(params.dq_row_stride, _1{}));
|
146 |
+
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
|
147 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
148 |
+
make_stride(params.h * params.d_rounded, _1{}));
|
149 |
+
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
150 |
+
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
151 |
+
Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
|
152 |
+
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
153 |
+
|
154 |
+
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
155 |
+
typename Kernel_traits::SmemLayoutQdO{});
|
156 |
+
Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
|
157 |
+
Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
|
158 |
+
// Double buffer for sQ
|
159 |
+
Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
|
160 |
+
Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
|
161 |
+
Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
|
162 |
+
typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
|
163 |
+
Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
|
164 |
+
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
|
165 |
+
Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
|
166 |
+
Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
|
167 |
+
Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
|
168 |
+
typename Kernel_traits::SmemLayoutPdS{});
|
169 |
+
Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
|
170 |
+
Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
|
171 |
+
Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
|
172 |
+
Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
|
173 |
+
Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
|
174 |
+
// sP and sdQ share the same memory so be careful
|
175 |
+
Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});
|
176 |
+
|
177 |
+
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
|
178 |
+
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
|
179 |
+
using GmemTiledCopydO = std::conditional_t<
|
180 |
+
Is_first,
|
181 |
+
typename Kernel_traits::GmemTiledCopydO,
|
182 |
+
typename Kernel_traits::GmemTiledCopyQKV
|
183 |
+
>;
|
184 |
+
GmemTiledCopydO gmem_tiled_copy_dO;
|
185 |
+
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
|
186 |
+
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
|
187 |
+
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
|
188 |
+
using GmemLayoutAtomdQaccum = std::conditional_t<
|
189 |
+
!Seq_parallel,
|
190 |
+
typename Kernel_traits::GmemTiledCopydQaccum,
|
191 |
+
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
|
192 |
+
>;
|
193 |
+
GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
|
194 |
+
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
|
195 |
+
|
196 |
+
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
|
197 |
+
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
|
198 |
+
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
|
199 |
+
Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
|
200 |
+
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
|
201 |
+
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
|
202 |
+
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
|
203 |
+
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
|
204 |
+
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
|
205 |
+
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
206 |
+
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
|
207 |
+
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
|
208 |
+
// if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
|
209 |
+
// __syncthreads();
|
210 |
+
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
|
211 |
+
// printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
|
212 |
+
// }
|
213 |
+
|
214 |
+
typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
|
215 |
+
auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
|
216 |
+
Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ); // (MMA,MMA_N,MMA_K)
|
217 |
+
Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
|
218 |
+
Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO); // (MMA,MMA_N,MMA_K)
|
219 |
+
Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV); // (MMA,MMA_N,MMA_K)
|
220 |
+
|
221 |
+
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
|
222 |
+
auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
|
223 |
+
Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
|
224 |
+
Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle); // (MMA, MMA_K, MMA_N)
|
225 |
+
Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle); // (MMA, MMA_N, MMA_N)
|
226 |
+
Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)
|
227 |
+
|
228 |
+
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
|
229 |
+
auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
|
230 |
+
Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS); // (MMA, MMA_N, MMA_N)
|
231 |
+
Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle); // (MMA, MMA_K, MMA_N)
|
232 |
+
|
233 |
+
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
234 |
+
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
235 |
+
|
236 |
+
//
|
237 |
+
// Copy Atom retiling
|
238 |
+
//
|
239 |
+
|
240 |
+
auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
|
241 |
+
auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
|
242 |
+
Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
|
243 |
+
Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);
|
244 |
+
|
245 |
+
// auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
|
246 |
+
auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
|
247 |
+
auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
|
248 |
+
Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
|
249 |
+
// if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
|
250 |
+
// if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
|
251 |
+
Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);
|
252 |
+
|
253 |
+
// Partition sP and sdS to match the accumulator partitioning
|
254 |
+
// This has to be tiled_mma_sdp, not tiled_mma_dkv
|
255 |
+
// auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
|
256 |
+
auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
|
257 |
+
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
|
258 |
+
Tensor tPsP = smem_thr_copy_PdS.partition_D(sP); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
259 |
+
// if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
|
260 |
+
// if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
|
261 |
+
// if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
|
262 |
+
// printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
|
263 |
+
// }
|
264 |
+
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
265 |
+
|
266 |
+
auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
|
267 |
+
auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
|
268 |
+
Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
|
269 |
+
Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);
|
270 |
+
|
271 |
+
auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
|
272 |
+
auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
|
273 |
+
Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
|
274 |
+
Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);
|
275 |
+
|
276 |
+
auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
|
277 |
+
auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
|
278 |
+
Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);
|
279 |
+
|
280 |
+
auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
|
281 |
+
auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
|
282 |
+
Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);
|
283 |
+
|
284 |
+
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
|
285 |
+
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
|
286 |
+
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
287 |
+
|
288 |
+
//
|
289 |
+
// PREDICATES
|
290 |
+
//
|
291 |
+
|
292 |
+
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
293 |
+
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
294 |
+
Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
|
295 |
+
Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);
|
296 |
+
|
297 |
+
// Allocate predicate tensors for k
|
298 |
+
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
|
299 |
+
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
|
300 |
+
|
301 |
+
// Set predicates for k bounds
|
302 |
+
if (!Is_even_K) {
|
303 |
+
#pragma unroll
|
304 |
+
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
|
305 |
+
#pragma unroll
|
306 |
+
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
|
307 |
+
}
|
308 |
+
|
309 |
+
// Prologue
|
310 |
+
|
311 |
+
// We'll advance gdQ and gdQaccum before the 1st read/write.
|
312 |
+
tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
|
313 |
+
tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
|
314 |
+
|
315 |
+
int m_block = m_block_max - 1;
|
316 |
+
int m_block_min = (!Is_causal && !Is_local)
|
317 |
+
? 0
|
318 |
+
: std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
|
319 |
+
// If not local, we're guaranteed that m_block_min <= m_block:
|
320 |
+
// We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
|
321 |
+
// n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
|
322 |
+
// So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
|
323 |
+
// Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
|
324 |
+
// So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
|
325 |
+
// We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
|
326 |
+
// However, if local, then this possible to have some blocks of K & V not attending to any query.
|
327 |
+
// We might need to exit early and write 0 to dK and dV for those blocks.
|
328 |
+
// Otherwise we get wrong result for the case where we don't enter the for loop.
|
329 |
+
// And we might read OOB elements from gQ and gdO.
|
330 |
+
// This also covers the case where actual_seqlen_q == 0
|
331 |
+
if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
|
332 |
+
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
|
333 |
+
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
|
334 |
+
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
|
335 |
+
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
|
336 |
+
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
|
337 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
338 |
+
make_stride(params.dk_row_stride, _1{}));
|
339 |
+
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
|
340 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
341 |
+
make_stride(params.dv_row_stride, _1{}));
|
342 |
+
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
|
343 |
+
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
|
344 |
+
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
|
345 |
+
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
|
346 |
+
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
|
347 |
+
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
|
348 |
+
clear(tdKrdK);
|
349 |
+
clear(tdVrdV);
|
350 |
+
Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
351 |
+
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
|
352 |
+
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
|
353 |
+
#pragma unroll
|
354 |
+
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
|
355 |
+
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
356 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
357 |
+
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
358 |
+
);
|
359 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
360 |
+
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
361 |
+
);
|
362 |
+
return;
|
363 |
+
}
|
364 |
+
|
365 |
+
if (Double_buffer && m_block % 2 == 1) { // Double buffer for sQ
|
366 |
+
tQsQ.data() = tQsQ.data() + size(sQ);
|
367 |
+
tSsQ.data() = tSsQ.data() + size(sQ);
|
368 |
+
tdKsQt.data() = tdKsQt.data() + size(sQ);
|
369 |
+
}
|
370 |
+
|
371 |
+
if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }
|
372 |
+
|
373 |
+
if (Kernel_traits::Is_V_in_regs) {
|
374 |
+
// Clear the smem tiles to account for predicated off loads
|
375 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
376 |
+
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
377 |
+
);
|
378 |
+
FLASH_NAMESPACE::cp_async_fence();
|
379 |
+
}
|
380 |
+
|
381 |
+
Tensor tdOrdO = make_fragment_like(tdOgdO);
|
382 |
+
Tensor tdOrO = make_fragment_like(tdOgO);
|
383 |
+
if (!Is_first) {
|
384 |
+
// Clear the smem tiles to account for predicated off loads
|
385 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
386 |
+
gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
387 |
+
);
|
388 |
+
} else {
|
389 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
390 |
+
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
391 |
+
);
|
392 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
393 |
+
gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
394 |
+
);
|
395 |
+
}
|
396 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
397 |
+
gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
398 |
+
);
|
399 |
+
|
400 |
+
Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
|
401 |
+
Tensor taccScS = thr_mma_sdp.partition_C(caccS); // (MMA,MMA_N,MMA_N)
|
402 |
+
static_assert(decltype(size<0>(taccScS))::value == 4);
|
403 |
+
// Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
|
404 |
+
Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
|
405 |
+
Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
|
406 |
+
#pragma unroll
|
407 |
+
for (int mi = 0; mi < size(lse); ++mi) {
|
408 |
+
const int row = get<0>(taccScS_row(mi));
|
409 |
+
lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
|
410 |
+
}
|
411 |
+
// We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
|
412 |
+
// and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
|
413 |
+
// with V (which would be zero), we're fine. However, with ALiBi, we might modify these
|
414 |
+
// scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
|
415 |
+
|
416 |
+
// Tensor tKrK = make_fragment_like(tKsK);
|
417 |
+
// // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
|
418 |
+
// cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
|
419 |
+
// // if (cute::thread(1, 0)) { print(tKrK); }
|
420 |
+
|
421 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
422 |
+
gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
423 |
+
);
|
424 |
+
if (!Kernel_traits::Is_V_in_regs) {
|
425 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
426 |
+
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
427 |
+
);
|
428 |
+
}
|
429 |
+
FLASH_NAMESPACE::cp_async_fence();
|
430 |
+
|
431 |
+
// if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
|
432 |
+
if (Is_first) {
|
433 |
+
cute::copy(tdOrdO, tdOsdO);
|
434 |
+
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
|
435 |
+
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
|
436 |
+
}
|
437 |
+
|
438 |
+
if (Kernel_traits::Is_V_in_regs) {
|
439 |
+
cute::cp_async_wait<1>();
|
440 |
+
__syncthreads();
|
441 |
+
Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
|
442 |
+
CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view)); // M
|
443 |
+
cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
|
444 |
+
}
|
445 |
+
|
446 |
+
FLASH_NAMESPACE::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
|
447 |
+
bidb, bidh, tidx, params.h);
|
448 |
+
|
449 |
+
clear(acc_dv);
|
450 |
+
clear(acc_dk);
|
451 |
+
|
452 |
+
const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
|
453 |
+
FLASH_NAMESPACE::Alibi<Is_causal> alibi(alibi_slope, binfo.actual_seqlen_k, binfo.actual_seqlen_q);
|
454 |
+
|
455 |
+
for (; m_block >= m_block_min; --m_block) {
|
456 |
+
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
|
457 |
+
clear(acc_s);
|
458 |
+
cute::cp_async_wait<0>();
|
459 |
+
__syncthreads();
|
460 |
+
|
461 |
+
Tensor dP_sum = make_fragment_like(lse);
|
462 |
+
#pragma unroll
|
463 |
+
for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }
|
464 |
+
|
465 |
+
// if (cute::thread0()) { print(sK); }
|
466 |
+
// Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
|
467 |
+
// #pragma unroll
|
468 |
+
// for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
|
469 |
+
// cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
|
470 |
+
// }
|
471 |
+
// if (cute::thread0()) { print(tSrK); }
|
472 |
+
FLASH_NAMESPACE::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
|
473 |
+
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
|
474 |
+
|
475 |
+
if constexpr (Is_softcap) {
|
476 |
+
FLASH_NAMESPACE::apply_softcap(acc_s, params.softcap);
|
477 |
+
}
|
478 |
+
|
479 |
+
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
|
480 |
+
Tensor scores = make_tensor(acc_s.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_s.layout()));
|
481 |
+
// if (cute::thread(32, 0)) { print(scores); }
|
482 |
+
|
483 |
+
// Softcapping - calculating dTanh and scaling dS later with it
|
484 |
+
[[maybe_unused]] Tensor dtanh = make_tensor_like(scores);
|
485 |
+
if constexpr (Is_softcap) {
|
486 |
+
FLASH_NAMESPACE::calculate_dtanh(scores, dtanh, params.softcap);
|
487 |
+
}
|
488 |
+
|
489 |
+
// Alibi
|
490 |
+
if (Has_alibi) {
|
491 |
+
alibi.apply_alibi(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
492 |
+
m_block * kBlockM + get<0>(taccScS_row(0)), AtomLayoutMS * 16);
|
493 |
+
}
|
494 |
+
|
495 |
+
// TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
|
496 |
+
// actual_seqlen_k, because acc_s would be some finite value for those indices.
|
497 |
+
// In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
|
498 |
+
// so the result would still be correct.
|
499 |
+
// However, it's possible that the values in acc_s are so large that they overflow
|
500 |
+
// when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
|
501 |
+
// So we need to mask out the elements beyond actual_seqlen_k.
|
502 |
+
if (!Is_causal && !Is_local) {
|
503 |
+
if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
|
504 |
+
FLASH_NAMESPACE::apply_mask(scores, binfo.actual_seqlen_k,
|
505 |
+
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
|
506 |
+
}
|
507 |
+
} else if (Is_causal) {
|
508 |
+
// Putting this causal masking right after acc_s is *much* slower for some reason.
|
509 |
+
// TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
|
510 |
+
// (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
|
511 |
+
// But we still want to mask out elements beyond actual_seqlen_k.
|
512 |
+
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
|
513 |
+
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
|
514 |
+
FLASH_NAMESPACE::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
515 |
+
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
|
516 |
+
binfo.actual_seqlen_q,
|
517 |
+
// binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
|
518 |
+
AtomLayoutMS * 16);
|
519 |
+
}
|
520 |
+
} else if (Is_local) {
|
521 |
+
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
|
522 |
+
|| (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
|
523 |
+
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
|
524 |
+
FLASH_NAMESPACE::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
525 |
+
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
|
526 |
+
binfo.actual_seqlen_q, AtomLayoutMS * 16,
|
527 |
+
params.window_size_left, params.window_size_right);
|
528 |
+
}
|
529 |
+
|
530 |
+
}
|
531 |
+
|
532 |
+
// if (cute::thread(32, 0)) { print(scores); }
|
533 |
+
// Compute the exponential value.
|
534 |
+
FLASH_NAMESPACE::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
|
535 |
+
if constexpr (Is_dropout) {
|
536 |
+
int warp_id = tidx / 32;
|
537 |
+
int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
|
538 |
+
// Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
|
539 |
+
static_assert(MMA_N_SdP % 2 == 0);
|
540 |
+
int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
|
541 |
+
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
542 |
+
acc_s, block_row_idx, block_col_idx, AtomLayoutMS
|
543 |
+
);
|
544 |
+
}
|
545 |
+
// Convert scores from fp32 to fp16/bf16
|
546 |
+
Tensor rP = !Is_dropout
|
547 |
+
? FLASH_NAMESPACE::convert_type<Element>(acc_s)
|
548 |
+
: FLASH_NAMESPACE::convert_type_relu<Element>(acc_s);
|
549 |
+
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_N, MMA_N / 2)
|
550 |
+
// if using m16n8k16 or (4, MMA_N, MMA_N) if using m16n8k8.
|
551 |
+
Tensor tPrP = make_tensor(rP.data(), FLASH_NAMESPACE::convert_layout_acc_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
|
552 |
+
Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP); // ((Atom,AtomNum), MMA_N, MMA_N)
|
553 |
+
cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
|
554 |
+
// if (cute::thread0()) { print(tPaP); }
|
555 |
+
// __syncthreads();
|
556 |
+
// if (cute::thread0()) { print(sP); }
|
557 |
+
|
558 |
+
Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
|
559 |
+
CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s)); // MMA
|
560 |
+
CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s)); // MMA
|
561 |
+
CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s)); // MMA
|
562 |
+
|
563 |
+
clear(acc_dp);
|
564 |
+
// Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_dp.layout()));
|
565 |
+
// #pragma unroll
|
566 |
+
// for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
|
567 |
+
// #pragma unroll
|
568 |
+
// for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
|
569 |
+
// acc_dp_reshaped(mi, ni) = -dP_sum(mi);
|
570 |
+
// }
|
571 |
+
// }
|
572 |
+
|
573 |
+
// if (cute::thread0()) { print(dP_sum); }
|
574 |
+
|
575 |
+
FLASH_NAMESPACE::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
|
576 |
+
acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
|
577 |
+
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
|
578 |
+
);
|
579 |
+
|
580 |
+
// Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
|
581 |
+
Tensor dS = make_tensor(acc_dp.data(), scores.layout());
|
582 |
+
auto pointwise_mult = [](float p, float dp, float d) {
|
583 |
+
return p * (!Is_dropout || p >= 0 ? dp - d : d);
|
584 |
+
};
|
585 |
+
#pragma unroll
|
586 |
+
for (int mi = 0; mi < size<0>(dS); ++mi) {
|
587 |
+
#pragma unroll
|
588 |
+
for (int ni = 0; ni < size<1>(dS); ++ni) {
|
589 |
+
float scaled_ds = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
|
590 |
+
if constexpr (Is_softcap) { scaled_ds *= dtanh(mi, ni); }
|
591 |
+
dS(mi, ni) = scaled_ds;
|
592 |
+
}
|
593 |
+
}
|
594 |
+
// if (cute::thread0()) { print(dS); }
|
595 |
+
|
596 |
+
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
597 |
+
tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
|
598 |
+
if (Is_first || Seq_parallel) {
|
599 |
+
clear(acc_dq);
|
600 |
+
} else {
|
601 |
+
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
|
602 |
+
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
|
603 |
+
make_layout(get<0>(acc_dq.layout()),
|
604 |
+
get<2>(acc_dq.layout()),
|
605 |
+
get<1>(acc_dq.layout())));
|
606 |
+
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
|
607 |
+
}
|
608 |
+
|
609 |
+
if (Double_buffer && m_block > m_block_min) {
|
610 |
+
// Double buffer for sQ
|
611 |
+
const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
|
612 |
+
tQsQ.data() = tQsQ.data() + sQ_offset;
|
613 |
+
tSsQ.data() = tSsQ.data() + sQ_offset;
|
614 |
+
// Advance gQ
|
615 |
+
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
|
616 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
|
617 |
+
FLASH_NAMESPACE::cp_async_fence();
|
618 |
+
}
|
619 |
+
|
620 |
+
Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
|
621 |
+
// Convert dS from fp32 to fp16
|
622 |
+
Tensor tdSrdS = FLASH_NAMESPACE::convert_type<Element>(dS_reshaped);
|
623 |
+
// if (cute::thread0()) { print(tPrP); }
|
624 |
+
Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS); // ((Atom,AtomNum), MMA_N, MMA_N)
|
625 |
+
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
|
626 |
+
__syncthreads();
|
627 |
+
|
628 |
+
// Layout p_l = tPrP.layout();
|
629 |
+
// Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
|
630 |
+
// FLASH_NAMESPACE::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
|
631 |
+
// Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
|
632 |
+
// FLASH_NAMESPACE::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
|
633 |
+
FLASH_NAMESPACE::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
|
634 |
+
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
|
635 |
+
// if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
|
636 |
+
// if (cute::thread0()) { print(acc_dv); }
|
637 |
+
|
638 |
+
__syncthreads(); // Need syncthreads since we're writing to the same sdO location
|
639 |
+
|
640 |
+
if (m_block > m_block_min) {
|
641 |
+
// Advance gdO
|
642 |
+
tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
|
643 |
+
if (Is_first) {
|
644 |
+
tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
|
645 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
|
646 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
|
647 |
+
} else {
|
648 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
|
649 |
+
FLASH_NAMESPACE::cp_async_fence();
|
650 |
+
}
|
651 |
+
}
|
652 |
+
|
653 |
+
FLASH_NAMESPACE::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
|
654 |
+
smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
|
655 |
+
// if (cute::thread0()) { print(acc_dq); }
|
656 |
+
|
657 |
+
if (m_block > m_block_min) {
|
658 |
+
gLSE.data() = gLSE.data() + (-int(kBlockM));
|
659 |
+
#pragma unroll
|
660 |
+
for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
|
661 |
+
gdPsum.data() = gdPsum.data() + (-int(kBlockM));
|
662 |
+
}
|
663 |
+
|
664 |
+
if (!Is_last) {
|
665 |
+
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
|
666 |
+
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
|
667 |
+
make_layout(get<0>(acc_dq.layout()),
|
668 |
+
get<2>(acc_dq.layout()),
|
669 |
+
get<1>(acc_dq.layout())));
|
670 |
+
if (!Seq_parallel) {
|
671 |
+
cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
|
672 |
+
} else {
|
673 |
+
// if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
|
674 |
+
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
|
675 |
+
#pragma unroll
|
676 |
+
for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
|
677 |
+
}
|
678 |
+
} else {
|
679 |
+
#pragma unroll
|
680 |
+
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
|
681 |
+
// Convert acc_dq from fp32 to fp16
|
682 |
+
Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
|
683 |
+
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
|
684 |
+
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
|
685 |
+
}
|
686 |
+
|
687 |
+
FLASH_NAMESPACE::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
|
688 |
+
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
|
689 |
+
// if (cute::thread0()) { print(acc_dk); }
|
690 |
+
if (Double_buffer) { // Double buffer for sQ
|
691 |
+
tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
|
692 |
+
}
|
693 |
+
if (!Double_buffer && m_block > m_block_min) {
|
694 |
+
__syncthreads();
|
695 |
+
// Advance gQ
|
696 |
+
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
|
697 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
|
698 |
+
FLASH_NAMESPACE::cp_async_fence();
|
699 |
+
}
|
700 |
+
|
701 |
+
if (Is_first && m_block > m_block_min) {
|
702 |
+
cute::copy(tdOrdO, tdOsdO);
|
703 |
+
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
|
704 |
+
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
|
705 |
+
}
|
706 |
+
|
707 |
+
if (Is_last) {
|
708 |
+
__syncthreads();
|
709 |
+
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
|
710 |
+
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
|
711 |
+
tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
|
712 |
+
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
713 |
+
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
|
714 |
+
#pragma unroll
|
715 |
+
for (int m = 0; m < size<1>(tdQgdQ); ++m) {
|
716 |
+
if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
|
717 |
+
cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
|
718 |
+
}
|
719 |
+
}
|
720 |
+
}
|
721 |
+
|
722 |
+
}
|
723 |
+
|
724 |
+
// Epilogue
|
725 |
+
|
726 |
+
if (Is_dropout) {
|
727 |
+
#pragma unroll
|
728 |
+
for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
|
729 |
+
}
|
730 |
+
#pragma unroll
|
731 |
+
for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }
|
732 |
+
|
733 |
+
// Convert acc_dv from fp32 to fp16
|
734 |
+
Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
|
735 |
+
Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);
|
736 |
+
|
737 |
+
Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
|
738 |
+
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
|
739 |
+
|
740 |
+
// Partition sdV and sdK to match the accumulator partitioning
|
741 |
+
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
|
742 |
+
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
|
743 |
+
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
|
744 |
+
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
745 |
+
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
|
746 |
+
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
747 |
+
|
748 |
+
// We need syncthreads here since we're writing to the same location as sK and sV.
|
749 |
+
// Without syncthreads, some thread might modify the location of sK while another thread
|
750 |
+
// is reading it for dQ gemm, leading to a race condition.
|
751 |
+
// If Is_last, there's already a __syncthreads() at the end of the loop.
|
752 |
+
if (!Is_last) { __syncthreads(); }
|
753 |
+
|
754 |
+
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
|
755 |
+
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
|
756 |
+
|
757 |
+
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
|
758 |
+
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
|
759 |
+
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
|
760 |
+
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
|
761 |
+
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
|
762 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
763 |
+
make_stride(params.dk_row_stride, _1{}));
|
764 |
+
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
|
765 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
766 |
+
make_stride(params.dv_row_stride, _1{}));
|
767 |
+
|
768 |
+
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
|
769 |
+
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
|
770 |
+
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
771 |
+
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
|
772 |
+
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
773 |
+
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
|
774 |
+
|
775 |
+
__syncthreads();
|
776 |
+
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
|
777 |
+
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
|
778 |
+
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
|
779 |
+
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
|
780 |
+
Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
781 |
+
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
|
782 |
+
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
|
783 |
+
#pragma unroll
|
784 |
+
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
|
785 |
+
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
786 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
787 |
+
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
788 |
+
);
|
789 |
+
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
790 |
+
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
791 |
+
);
|
792 |
+
|
793 |
+
}
|
794 |
+
|
795 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
796 |
+
|
797 |
+
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
|
798 |
+
inline __device__ void compute_dq_dk_dv(const Params ¶ms) {
|
799 |
+
|
800 |
+
// The block index for the batch.
|
801 |
+
const int bidb = blockIdx.x;
|
802 |
+
// const int bidb = blockIdx.y;
|
803 |
+
// The block index for the head.
|
804 |
+
const int bidh = blockIdx.y;
|
805 |
+
// const int bidh = blockIdx.z;
|
806 |
+
// The thread index.
|
807 |
+
const int tidx = threadIdx.x;
|
808 |
+
|
809 |
+
const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
|
810 |
+
if (n_block_max == 1) {
|
811 |
+
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
|
812 |
+
} else {
|
813 |
+
// Iterating backward from n_block_max - 1 to 0 might save 1 register
|
814 |
+
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
|
815 |
+
for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
|
816 |
+
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
|
817 |
+
}
|
818 |
+
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
|
819 |
+
}
|
820 |
+
}
|
821 |
+
|
822 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
823 |
+
|
824 |
+
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, typename Params>
|
825 |
+
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params ¶ms) {
|
826 |
+
|
827 |
+
// The block index for the batch.
|
828 |
+
const int bidb = blockIdx.y;
|
829 |
+
// The block index for the head.
|
830 |
+
const int bidh = blockIdx.z;
|
831 |
+
|
832 |
+
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
|
833 |
+
for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
|
834 |
+
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
|
835 |
+
}
|
836 |
+
}
|
837 |
+
|
838 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
839 |
+
} // namespace flash
|
flash_attn/src/flash_bwd_launch_template.h
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2024, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
9 |
+
|
10 |
+
#include "static_switch.h"
|
11 |
+
#include "hardware_info.h"
|
12 |
+
#include "flash.h"
|
13 |
+
#include "flash_bwd_preprocess_kernel.h"
|
14 |
+
#include "flash_bwd_kernel.h"
|
15 |
+
|
16 |
+
namespace FLASH_NAMESPACE {
|
17 |
+
|
18 |
+
// Determine if the architecture supports FLASH and define a macro to handle parameter modifiers
|
19 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
20 |
+
#define ARCH_SUPPORTS_FLASH
|
21 |
+
#define KERNEL_PARAM_MODIFIER __grid_constant__
|
22 |
+
#else
|
23 |
+
#define KERNEL_PARAM_MODIFIER
|
24 |
+
#endif
|
25 |
+
|
26 |
+
// Define a macro for unsupported architecture handling to centralize the error message
|
27 |
+
#define FLASH_UNSUPPORTED_ARCH printf("FATAL: FlashAttention requires building with sm version sm80-sm90, but was built for < 8.0!");
|
28 |
+
|
29 |
+
// Use a macro to clean up kernel definitions
|
30 |
+
#define DEFINE_FLASH_BACKWARD_KERNEL(kernelName, ...) \
|
31 |
+
template<typename Kernel_traits, __VA_ARGS__> \
|
32 |
+
__global__ void kernelName(KERNEL_PARAM_MODIFIER const Flash_bwd_params params)
|
33 |
+
|
34 |
+
DEFINE_FLASH_BACKWARD_KERNEL(flash_bwd_dq_dk_dv_loop_kernel, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K) {
|
35 |
+
#if defined(ARCH_SUPPORTS_FLASH)
|
36 |
+
FLASH_NAMESPACE::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K>(params);
|
37 |
+
#else
|
38 |
+
FLASH_UNSUPPORTED_ARCH
|
39 |
+
#endif
|
40 |
+
}
|
41 |
+
|
42 |
+
DEFINE_FLASH_BACKWARD_KERNEL(flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap) {
|
43 |
+
#if defined(ARCH_SUPPORTS_FLASH)
|
44 |
+
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
|
45 |
+
FLASH_NAMESPACE::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap>(params);
|
46 |
+
#else
|
47 |
+
FLASH_UNSUPPORTED_ARCH
|
48 |
+
#endif
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
template<bool Clear_dQaccum=true, typename Kernel_traits>
|
53 |
+
__global__ void flash_bwd_dot_do_o_kernel(const Flash_bwd_params params) {
|
54 |
+
FLASH_NAMESPACE::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
|
55 |
+
}
|
56 |
+
|
57 |
+
template<typename Kernel_traits>
|
58 |
+
__global__ void flash_bwd_clear_dkvaccum_kernel(const Flash_bwd_params params) {
|
59 |
+
FLASH_NAMESPACE::clear_dKVaccum<Kernel_traits>(params);
|
60 |
+
}
|
61 |
+
|
62 |
+
template<typename Kernel_traits>
|
63 |
+
__global__ void flash_bwd_convert_dq_kernel(const Flash_bwd_params params, const int nsplits) {
|
64 |
+
FLASH_NAMESPACE::convert_dQ<Kernel_traits>(params, nsplits);
|
65 |
+
}
|
66 |
+
|
67 |
+
template<typename Kernel_traits>
|
68 |
+
__global__ void flash_bwd_convert_dkv_kernel(const Flash_bwd_params params) {
|
69 |
+
FLASH_NAMESPACE::convert_dKV<Kernel_traits>(params);
|
70 |
+
}
|
71 |
+
|
72 |
+
template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
|
73 |
+
void run_flash_bwd_seqk_parallel(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
74 |
+
const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
|
75 |
+
dim3 grid_m(num_m_block, params.b, params.h);
|
76 |
+
const int num_n_block = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
|
77 |
+
int gridDimx = num_n_block;
|
78 |
+
if (params.deterministic) {
|
79 |
+
int num_sm = get_num_sm(get_current_device());
|
80 |
+
gridDimx = (num_sm + params.b * params.h - 1) / (params.b * params.h);
|
81 |
+
}
|
82 |
+
dim3 grid_n(gridDimx, params.b, params.h);
|
83 |
+
|
84 |
+
if (!params.deterministic) {
|
85 |
+
flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
|
86 |
+
} else {
|
87 |
+
flash_bwd_dot_do_o_kernel<false, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
|
88 |
+
}
|
89 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
90 |
+
|
91 |
+
// We want to specialize to is_even_MN and not just is_even_M, since in the case where N is not
|
92 |
+
// a multiple of kBlockN, we'll need to apply mask in the loop.
|
93 |
+
const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_q % Kernel_traits::kBlockM == 0 && params.seqlen_k % Kernel_traits::kBlockN == 0;
|
94 |
+
const bool is_even_K = params.d == Kernel_traits::kHeadDim;
|
95 |
+
constexpr int smem_size_dq_dk_dv = Kernel_traits::kSmemSize1colblock;
|
96 |
+
// printf("smem_size_dq_dk_dv = %d\n", smem_size_dq_dk_dv);
|
97 |
+
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
|
98 |
+
EVENK_SWITCH(is_even_K, IsEvenKConst, [&] {
|
99 |
+
LOCAL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !params.is_causal, Is_local, [&] {
|
100 |
+
ALIBI_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
|
101 |
+
SOFTCAP_SWITCH(params.softcap > 0.0, Is_softcap, [&] {
|
102 |
+
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
|
103 |
+
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
|
104 |
+
// If Is_local, set Is_causal to false
|
105 |
+
auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout && !Is_softcap, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst, Is_softcap>;
|
106 |
+
// auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, false, Is_causal, false, false, true, true>;
|
107 |
+
if (smem_size_dq_dk_dv >= 48 * 1024) {
|
108 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
109 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
|
110 |
+
}
|
111 |
+
kernel<<<grid_n, Kernel_traits::kNThreads, smem_size_dq_dk_dv, stream>>>(params);
|
112 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
113 |
+
});
|
114 |
+
});
|
115 |
+
});
|
116 |
+
});
|
117 |
+
});
|
118 |
+
|
119 |
+
auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
|
120 |
+
if (Kernel_traits::kSmemdQSize >= 48 * 1024) {
|
121 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
122 |
+
kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize));
|
123 |
+
}
|
124 |
+
kernel_dq<<<grid_m, Kernel_traits::kNThreads, Kernel_traits::kSmemdQSize, stream>>>(params, !params.deterministic ? 1 : gridDimx);
|
125 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
126 |
+
}
|
127 |
+
|
128 |
+
template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
|
129 |
+
void run_flash_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
130 |
+
#ifndef FLASHATTENTION_DISABLE_BACKWARD
|
131 |
+
run_flash_bwd_seqk_parallel<Kernel_traits, Is_dropout, Is_causal>(params, stream);
|
132 |
+
#endif
|
133 |
+
}
|
134 |
+
|
135 |
+
template<typename T, bool Is_causal>
|
136 |
+
void run_mha_bwd_hdim32(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
137 |
+
constexpr static int Headdim = 32;
|
138 |
+
int device;
|
139 |
+
cudaGetDevice(&device);
|
140 |
+
int max_smem_per_block;
|
141 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
142 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
143 |
+
if (status_ != cudaSuccess) {
|
144 |
+
C10_CUDA_CHECK(status_);
|
145 |
+
}
|
146 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
147 |
+
if (max_smem_per_block >= 2 * ((3 * 128 + 2 * 128) * Headdim + 2 * 128 * 128)) { // 104 KB
|
148 |
+
if constexpr(!Is_dropout) { // We can afford more registers to keep V in registers
|
149 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
150 |
+
} else {
|
151 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
152 |
+
}
|
153 |
+
} else { // 96 KB
|
154 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
155 |
+
}
|
156 |
+
});
|
157 |
+
}
|
158 |
+
|
159 |
+
template<typename T, bool Is_causal>
|
160 |
+
void run_mha_bwd_hdim64(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
161 |
+
constexpr static int Headdim = 64;
|
162 |
+
int device;
|
163 |
+
cudaGetDevice(&device);
|
164 |
+
int max_smem_per_block;
|
165 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
166 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
167 |
+
if (status_ != cudaSuccess) {
|
168 |
+
C10_CUDA_CHECK(status_);
|
169 |
+
}
|
170 |
+
// printf("max_smem_per_block = %d\n", max_smem_per_block);
|
171 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
172 |
+
// Changing AtomLayoutMdQ from 2 to 4 takes the same time
|
173 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>>(params, stream);
|
174 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>>(params, stream);
|
175 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 2, 4, 4, false, false, T>>(params, stream);
|
176 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream);
|
177 |
+
// This is slightly faster. We want to split M more so we need fewer registers to store LSE.
|
178 |
+
if (max_smem_per_block >= 144 * 1024) {
|
179 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
180 |
+
// This has a lot of register spilling
|
181 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream);
|
182 |
+
} else {
|
183 |
+
// if (params.h == params.h_k) {
|
184 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream);
|
185 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
186 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream);
|
187 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>, Is_dropout>(params, stream);
|
188 |
+
// } else {
|
189 |
+
// }
|
190 |
+
}
|
191 |
+
});
|
192 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>>(params, stream);
|
193 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, 2, 2, 2, true, false, T>>(params, stream);
|
194 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 4, 1, 4, 1, false, false, T>>(params, stream);
|
195 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 16, 128, 4, 1, 4, 1, false, false, T>>(params, stream);
|
196 |
+
// M=128, N=64 is quite slow, I think because we need to read/write dQaccum twice as many times
|
197 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 2, 2, 2, false, T>>(params, stream);
|
198 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream);
|
199 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream);
|
200 |
+
|
201 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 4, 4, 2, 4, false, false, T>>(params, stream);
|
202 |
+
}
|
203 |
+
|
204 |
+
template<typename T, bool Is_causal>
|
205 |
+
void run_mha_bwd_hdim96(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
206 |
+
constexpr static int Headdim = 96;
|
207 |
+
int device;
|
208 |
+
cudaGetDevice(&device);
|
209 |
+
int max_smem_per_block;
|
210 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
211 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
212 |
+
if (status_ != cudaSuccess) {
|
213 |
+
C10_CUDA_CHECK(status_);
|
214 |
+
}
|
215 |
+
// printf("max_smem_per_block = %d\n", max_smem_per_block);
|
216 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
217 |
+
if (max_smem_per_block >= 116 * 1024) {
|
218 |
+
if constexpr(!Is_dropout) { // 92KB
|
219 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
220 |
+
} else { // 116 KB
|
221 |
+
// This is faster for dropout since we don't have many registers to spare
|
222 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
223 |
+
}
|
224 |
+
} else {
|
225 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
226 |
+
}
|
227 |
+
});
|
228 |
+
}
|
229 |
+
|
230 |
+
template<typename T, bool Is_causal>
|
231 |
+
void run_mha_bwd_hdim128(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
232 |
+
constexpr static int Headdim = 128;
|
233 |
+
int device;
|
234 |
+
cudaGetDevice(&device);
|
235 |
+
int max_smem_per_block;
|
236 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
237 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
238 |
+
if (status_ != cudaSuccess) {
|
239 |
+
C10_CUDA_CHECK(status_);
|
240 |
+
}
|
241 |
+
// printf("max_smem_per_block = %d\n", max_smem_per_block);
|
242 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
243 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 8, 2, 2, 2, false, false, T>>(params, stream);
|
244 |
+
// This is faster, in the case of sequence-parallel bwd (where we need fewer registers).
|
245 |
+
// Out of these three, the 2nd one is slightly faster (2% faster than the first). Idk why.
|
246 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 2, 2, false, false, T>>(params, stream);
|
247 |
+
if (max_smem_per_block >= 144 * 1024) {
|
248 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
249 |
+
// run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream);
|
250 |
+
// run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream);
|
251 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>, Is_dropout>(params, stream);
|
252 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream);
|
253 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream);
|
254 |
+
} else {
|
255 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream);
|
256 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, false, T>, Is_dropout, Is_causal>(params, stream);
|
257 |
+
}
|
258 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>>(params, stream);
|
259 |
+
|
260 |
+
// run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream);
|
261 |
+
});
|
262 |
+
}
|
263 |
+
|
264 |
+
template<typename T, bool Is_causal>
|
265 |
+
void run_mha_bwd_hdim160(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
266 |
+
constexpr static int Headdim = 160;
|
267 |
+
int device;
|
268 |
+
cudaGetDevice(&device);
|
269 |
+
int max_smem_per_block;
|
270 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
271 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
272 |
+
if (status_ != cudaSuccess) {
|
273 |
+
C10_CUDA_CHECK(status_);
|
274 |
+
}
|
275 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
276 |
+
if (max_smem_per_block >= 116 * 1024) {
|
277 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
278 |
+
} else {
|
279 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, true, T>, Is_dropout, Is_causal>(params, stream);
|
280 |
+
}
|
281 |
+
});
|
282 |
+
}
|
283 |
+
|
284 |
+
template<typename T, bool Is_causal>
|
285 |
+
void run_mha_bwd_hdim192(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
286 |
+
constexpr static int Headdim = 192;
|
287 |
+
int device;
|
288 |
+
cudaGetDevice(&device);
|
289 |
+
int max_smem_per_block;
|
290 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
291 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
292 |
+
if (status_ != cudaSuccess) {
|
293 |
+
C10_CUDA_CHECK(status_);
|
294 |
+
}
|
295 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
296 |
+
if (max_smem_per_block >= 136 * 1024) {
|
297 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
298 |
+
} else {
|
299 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, true, T>, Is_dropout, Is_causal>(params, stream);
|
300 |
+
}
|
301 |
+
});
|
302 |
+
}
|
303 |
+
|
304 |
+
template<typename T, bool Is_causal>
|
305 |
+
void run_mha_bwd_hdim256(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
306 |
+
constexpr static int Headdim = 256;
|
307 |
+
int device;
|
308 |
+
cudaGetDevice(&device);
|
309 |
+
int max_smem_per_block;
|
310 |
+
cudaError status_ = cudaDeviceGetAttribute(
|
311 |
+
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
312 |
+
if (status_ != cudaSuccess) {
|
313 |
+
C10_CUDA_CHECK(status_);
|
314 |
+
}
|
315 |
+
DROPOUT_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
316 |
+
if (max_smem_per_block >= 176 * 1024) { // H100
|
317 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout, Is_causal>(params, stream);
|
318 |
+
} else if (max_smem_per_block >= 144 * 1024) { // A100, we don't do double buffering to save smem
|
319 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, true, T>, Is_dropout, Is_causal>(params, stream);
|
320 |
+
} else { // sm86 and sm89, max smem is 99 KB. Only works without dropout. V in regs and no double buffering.
|
321 |
+
if constexpr (!Is_dropout) {
|
322 |
+
run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 32, 8, 4, 1, 2, true, true, T>, false, Is_causal>(params, stream);
|
323 |
+
}
|
324 |
+
}
|
325 |
+
});
|
326 |
+
}
|
327 |
+
|
328 |
+
} // namespace FLASH_NAMESPACE {
|
flash_attn/src/flash_bwd_preprocess_kernel.h
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2024, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include "namespace_config.h"
|
8 |
+
#include <cute/tensor.hpp>
|
9 |
+
|
10 |
+
#include <cutlass/cutlass.h>
|
11 |
+
#include <cutlass/array.h>
|
12 |
+
#include <cutlass/numeric_types.h>
|
13 |
+
|
14 |
+
#include "block_info.h"
|
15 |
+
#include "kernel_traits.h"
|
16 |
+
#include "utils.h"
|
17 |
+
|
18 |
+
namespace FLASH_NAMESPACE {
|
19 |
+
|
20 |
+
using namespace cute;
|
21 |
+
|
22 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
23 |
+
|
24 |
+
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
25 |
+
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
|
26 |
+
Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
|
27 |
+
static_assert(Layout0::rank == 3, "Only support 3D Tensor");
|
28 |
+
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
29 |
+
CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
|
30 |
+
// Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
|
31 |
+
// The last coordinate is the "page".
|
32 |
+
Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
|
33 |
+
make_layout(get<0>(do_.layout()),
|
34 |
+
get<2>(do_.layout()))));
|
35 |
+
Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
|
36 |
+
Tensor do_fp32 = FLASH_NAMESPACE::convert_type<float>(do_reshaped);
|
37 |
+
Tensor o_fp32 = FLASH_NAMESPACE::convert_type<float>(o_reshaped);
|
38 |
+
#pragma unroll
|
39 |
+
for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
|
40 |
+
float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
|
41 |
+
#pragma unroll
|
42 |
+
for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
|
43 |
+
dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
|
44 |
+
}
|
45 |
+
FLASH_NAMESPACE::SumOp<float> sum_op;
|
46 |
+
dP_sum_cur = FLASH_NAMESPACE::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
|
47 |
+
if (threadIdx.x % THREADS_PER_ROW == 0) {
|
48 |
+
dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
|
49 |
+
}
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
|
56 |
+
// This is used in the case where we want to parallelize the backward across seqlen_k.
|
57 |
+
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
|
58 |
+
inline __device__ void compute_dot_do_o(const Params ¶ms) {
|
59 |
+
using Element = typename Kernel_traits::Element;
|
60 |
+
using ElementAccum = typename Kernel_traits::ElementAccum;
|
61 |
+
using index_t = typename Kernel_traits::index_t;
|
62 |
+
|
63 |
+
const int m_block = blockIdx.x;
|
64 |
+
// The block index for the batch.
|
65 |
+
const int bidb = blockIdx.y;
|
66 |
+
// The block index for the head.
|
67 |
+
const int bidh = blockIdx.z;
|
68 |
+
// The thread index.
|
69 |
+
const int tidx = threadIdx.x;
|
70 |
+
|
71 |
+
constexpr int kBlockM = Kernel_traits::kBlockM;
|
72 |
+
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
73 |
+
|
74 |
+
const BlockInfo binfo(params, bidb);
|
75 |
+
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
|
76 |
+
|
77 |
+
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
|
78 |
+
+ m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
|
79 |
+
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
80 |
+
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
81 |
+
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
|
82 |
+
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
|
83 |
+
// Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
|
84 |
+
const index_t row_offset_dpsum = (params.unpadded_lse ? (bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb): (bidb * params.h + bidh) * params.seqlen_q_rounded) + m_block * kBlockM;
|
85 |
+
|
86 |
+
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
|
87 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
88 |
+
make_stride(params.do_row_stride, _1{}));
|
89 |
+
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
|
90 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
91 |
+
make_stride(params.o_row_stride, _1{}));
|
92 |
+
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
|
93 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
94 |
+
make_stride(params.h * params.d_rounded, _1{}));
|
95 |
+
Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
|
96 |
+
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
97 |
+
|
98 |
+
typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
|
99 |
+
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
|
100 |
+
// TODO: careful, we're zeroing out dQaccum with type float4, but when
|
101 |
+
// we do atomicAdds, we use type float. The layouts are different. Check this.
|
102 |
+
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
|
103 |
+
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
|
104 |
+
|
105 |
+
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
|
106 |
+
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
|
107 |
+
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
|
108 |
+
|
109 |
+
Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
110 |
+
Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);
|
111 |
+
|
112 |
+
// Allocate predicate tensors for k
|
113 |
+
Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
|
114 |
+
// Set predicates for k bounds
|
115 |
+
#pragma unroll
|
116 |
+
for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}
|
117 |
+
|
118 |
+
Tensor tdOrdO = make_fragment_like(tdOgdO);
|
119 |
+
Tensor tdOrO = make_fragment_like(tdOgO);
|
120 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
|
121 |
+
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
|
122 |
+
);
|
123 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
|
124 |
+
gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
|
125 |
+
);
|
126 |
+
// By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
|
127 |
+
// results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
|
128 |
+
// so that (dP - dP_sum) is on the same scale.
|
129 |
+
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
|
130 |
+
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
|
131 |
+
if (Clear_dQaccum) {
|
132 |
+
// We're actually not zero'ing out all of dQaccum, but only the part that we're going to
|
133 |
+
// do atomicAdds on.
|
134 |
+
Tensor zero = make_fragment_like(tdQgdQaccum);
|
135 |
+
clear(zero);
|
136 |
+
cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
|
137 |
+
}
|
138 |
+
}
|
139 |
+
|
140 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
141 |
+
|
142 |
+
template<typename Kernel_traits, typename Params>
|
143 |
+
inline __device__ void clear_dKVaccum(const Params ¶ms) {
|
144 |
+
using ElementAccum = typename Kernel_traits::ElementAccum;
|
145 |
+
using index_t = typename Kernel_traits::index_t;
|
146 |
+
|
147 |
+
const int n_block = blockIdx.x;
|
148 |
+
// The block index for the batch.
|
149 |
+
const int bidb = blockIdx.y;
|
150 |
+
// The block index for the head.
|
151 |
+
const int bidh = blockIdx.z;
|
152 |
+
// The thread index.
|
153 |
+
const int tidx = threadIdx.x;
|
154 |
+
|
155 |
+
constexpr int kBlockN = Kernel_traits::kBlockN;
|
156 |
+
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
157 |
+
|
158 |
+
const BlockInfo binfo(params, bidb);
|
159 |
+
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
|
160 |
+
|
161 |
+
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;
|
162 |
+
|
163 |
+
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
|
164 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
|
165 |
+
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
|
166 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
|
167 |
+
|
168 |
+
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
|
169 |
+
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
|
170 |
+
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
|
171 |
+
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
|
172 |
+
Tensor zero = make_fragment_like(tdKgdKaccum);
|
173 |
+
clear(zero);
|
174 |
+
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
|
175 |
+
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
|
176 |
+
}
|
177 |
+
|
178 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
179 |
+
|
180 |
+
// Convert dQ from dQaccum (in float) to fp16/bf16.
|
181 |
+
// This is used in the case where we want to parallelize the backward across seqlen_k.
|
182 |
+
template<typename Kernel_traits, typename Params>
|
183 |
+
inline __device__ void convert_dQ(const Params ¶ms, const int nsplits) {
|
184 |
+
using Element = typename Kernel_traits::Element;
|
185 |
+
using ElementAccum = typename Kernel_traits::ElementAccum;
|
186 |
+
using index_t = typename Kernel_traits::index_t;
|
187 |
+
|
188 |
+
// Shared memory.
|
189 |
+
extern __shared__ char smem_[];
|
190 |
+
|
191 |
+
const int m_block = blockIdx.x;
|
192 |
+
// The block index for the batch.
|
193 |
+
const int bidb = blockIdx.y;
|
194 |
+
// The block index for the head.
|
195 |
+
const int bidh = blockIdx.z;
|
196 |
+
// The thread index.
|
197 |
+
const int tidx = threadIdx.x;
|
198 |
+
|
199 |
+
constexpr int kBlockM = Kernel_traits::kBlockM;
|
200 |
+
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
201 |
+
|
202 |
+
const BlockInfo binfo(params, bidb);
|
203 |
+
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
|
204 |
+
|
205 |
+
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
|
206 |
+
+ m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
|
207 |
+
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
|
208 |
+
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
|
209 |
+
|
210 |
+
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
|
211 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
212 |
+
make_stride(params.dq_row_stride, _1{}));
|
213 |
+
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
|
214 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
215 |
+
make_stride(params.h * params.d_rounded, _1{}));
|
216 |
+
|
217 |
+
Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
218 |
+
typename Kernel_traits::SmemLayoutdQ{});
|
219 |
+
|
220 |
+
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
|
221 |
+
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
|
222 |
+
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
|
223 |
+
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
|
224 |
+
|
225 |
+
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
|
226 |
+
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
|
227 |
+
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
|
228 |
+
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
229 |
+
|
230 |
+
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
231 |
+
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
|
232 |
+
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
|
233 |
+
|
234 |
+
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
235 |
+
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
|
236 |
+
|
237 |
+
Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
|
238 |
+
clear(acc_dq);
|
239 |
+
for (int s = 0; s < nsplits; ++s) {
|
240 |
+
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
|
241 |
+
#pragma unroll
|
242 |
+
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) += tdQrdQaccum(i); }
|
243 |
+
tdQgdQaccum.data() = tdQgdQaccum.data() + params.dq_accum_split_stride;
|
244 |
+
}
|
245 |
+
#pragma unroll
|
246 |
+
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
|
247 |
+
// Convert acc_dq from fp32 to fp16
|
248 |
+
Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
|
249 |
+
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
|
250 |
+
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
|
251 |
+
__syncthreads();
|
252 |
+
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
|
253 |
+
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
|
254 |
+
|
255 |
+
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
256 |
+
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
|
257 |
+
Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
|
258 |
+
#pragma unroll
|
259 |
+
for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
|
260 |
+
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
261 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
262 |
+
gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
|
263 |
+
);
|
264 |
+
}
|
265 |
+
|
266 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
267 |
+
|
268 |
+
// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
|
269 |
+
// This is used in the case where we want to parallelize the backward across seqlen_q.
|
270 |
+
template<typename Kernel_traits, typename Params>
|
271 |
+
inline __device__ void convert_dKV(const Params ¶ms) {
|
272 |
+
using Element = typename Kernel_traits::Element;
|
273 |
+
using ElementAccum = typename Kernel_traits::ElementAccum;
|
274 |
+
using index_t = typename Kernel_traits::index_t;
|
275 |
+
|
276 |
+
// Shared memory.
|
277 |
+
extern __shared__ char smem_[];
|
278 |
+
|
279 |
+
const int n_block = blockIdx.x;
|
280 |
+
// The block index for the batch.
|
281 |
+
const int bidb = blockIdx.y;
|
282 |
+
// The block index for the head.
|
283 |
+
const int bidh = blockIdx.z;
|
284 |
+
// The thread index.
|
285 |
+
const int tidx = threadIdx.x;
|
286 |
+
|
287 |
+
constexpr int kBlockN = Kernel_traits::kBlockN;
|
288 |
+
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
289 |
+
|
290 |
+
const BlockInfo binfo(params, bidb);
|
291 |
+
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
|
292 |
+
|
293 |
+
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
|
294 |
+
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
|
295 |
+
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
|
296 |
+
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
|
297 |
+
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
|
298 |
+
+ n_block * kBlockN) * params.d_rounded;
|
299 |
+
|
300 |
+
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
|
301 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
302 |
+
make_stride(params.dk_row_stride, _1{}));
|
303 |
+
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
|
304 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
305 |
+
make_stride(params.dv_row_stride, _1{}));
|
306 |
+
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
|
307 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
308 |
+
Stride<Int<kHeadDim>, _1>{});
|
309 |
+
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
|
310 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
311 |
+
Stride<Int<kHeadDim>, _1>{});
|
312 |
+
|
313 |
+
Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
314 |
+
typename Kernel_traits::SmemLayoutdKV{});
|
315 |
+
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
|
316 |
+
|
317 |
+
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
|
318 |
+
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
|
319 |
+
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
|
320 |
+
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
|
321 |
+
|
322 |
+
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
|
323 |
+
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
|
324 |
+
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
|
325 |
+
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
326 |
+
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
327 |
+
|
328 |
+
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
329 |
+
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
|
330 |
+
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
331 |
+
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
|
332 |
+
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
|
333 |
+
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
|
334 |
+
|
335 |
+
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
336 |
+
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
337 |
+
CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
|
338 |
+
CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));
|
339 |
+
|
340 |
+
Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
|
341 |
+
Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
|
342 |
+
cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
|
343 |
+
cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
|
344 |
+
#pragma unroll
|
345 |
+
for (int i = 0; i < size(acc_dk); ++i) {
|
346 |
+
acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
|
347 |
+
}
|
348 |
+
#pragma unroll
|
349 |
+
for (int i = 0; i < size(acc_dv); ++i) {
|
350 |
+
acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
|
351 |
+
}
|
352 |
+
// Convert acc_dk from fp32 to fp16
|
353 |
+
Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
|
354 |
+
Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);
|
355 |
+
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
|
356 |
+
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
|
357 |
+
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
|
358 |
+
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
|
359 |
+
__syncthreads();
|
360 |
+
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
|
361 |
+
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
|
362 |
+
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
|
363 |
+
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
|
364 |
+
|
365 |
+
Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
366 |
+
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
|
367 |
+
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
|
368 |
+
#pragma unroll
|
369 |
+
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
|
370 |
+
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
371 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
372 |
+
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
373 |
+
);
|
374 |
+
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
375 |
+
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
376 |
+
);
|
377 |
+
}
|
378 |
+
|
379 |
+
} // namespace flash
|
flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 128, true>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim128<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 128, false>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim128<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::half_t, 128, true>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim128<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::half_t, 128, false>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim128<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 160, true>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim160<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 160, false>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim160<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::half_t, 160, true>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim160<cutlass::half_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::half_t, 160, false>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim160<cutlass::half_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 192, true>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim192<cutlass::bfloat16_t, true>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|
flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2024, Tri Dao.
|
2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
4 |
+
#include "namespace_config.h"
|
5 |
+
#include "flash_fwd_launch_template.h"
|
6 |
+
|
7 |
+
namespace FLASH_NAMESPACE {
|
8 |
+
|
9 |
+
template<>
|
10 |
+
void run_mha_fwd_<cutlass::bfloat16_t, 192, false>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
11 |
+
run_mha_fwd_hdim192<cutlass::bfloat16_t, false>(params, stream);
|
12 |
+
}
|
13 |
+
|
14 |
+
} // namespace FLASH_NAMESPACE
|