# Flash Attention Flash Attention is a fast and memory-efficient implementation of the attention mechanism, designed to work with large models and long sequences. This is a Hugging Face compliant kernel build of Flash Attention. Original code here [https://github.com/Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention). ```python # /// script # dependencies = ["numpy", "torch", "kernels"] # /// import torch from kernels import get_kernel # Setup torch.manual_seed(42) flash_attn = get_kernel("kernels-community/flash-attn") device = torch.device("cuda") # Show available functions print("Flash Attention functions:", [i for i in dir(flash_attn) if i.startswith("mha")]) # 1. Standard attention print("\n1. Standard attention:") B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16) out = flash_attn.mha_fwd(q=q, k=k, v=v, is_causal=False)[0] print(f"Output: {out.shape}") # 2. Variable length sequences print("\n2. Variable length sequences:") q_var = torch.randn(10, H, D, device=device, dtype=torch.float16) # total_q=10 k_var = v_var = torch.randn(12, H, D, device=device, dtype=torch.float16) # total_k=12 # For 3 sequences with lengths [3,4,3] for q and [4,5,3] for k cu_q = torch.tensor([0, 3, 7, 10], device=device, dtype=torch.int32) cu_k = torch.tensor([0, 4, 9, 12], device=device, dtype=torch.int32) out_var = flash_attn.mha_varlen_fwd( q=q_var, k=k_var, v=v_var, cu_seqlens_q=cu_q, cu_seqlens_k=cu_k, max_seqlen_q=4, max_seqlen_k=5, )[0] print(f"Output: {out_var.shape}") # 3. KV-cache for autoregressive generation print("\n3. KV-cache:") cache_len, new_len = 10, 2 kcache = vcache = torch.randn(B, cache_len, H, D, device=device, dtype=torch.float16) q_new = k_new = v_new = torch.randn( B, new_len, H, D, device=device, dtype=torch.float16 ) seqlens = torch.full((B,), cache_len + new_len, device=device, dtype=torch.int32) out_kv = flash_attn.mha_fwd_kvcache( q=q_new, kcache=kcache, vcache=vcache, k=k_new, v=v_new, seqlens_k=seqlens, is_causal=True, )[0] print(f"Output: {out_kv.shape}") ``` expected output ```txt Fetching 3 files: 100%|█████████████████████████████████████████████████████| 3/3 [00:00<00:00, 16384.00it/s] Flash Attention functions: ['mha_bwd', 'mha_fwd', 'mha_fwd_kvcache', 'mha_varlen_bwd', 'mha_varlen_fwd'] 1. Standard attention: Output: torch.Size([2, 5, 4, 8]) 2. Variable length sequences: Output: torch.Size([10, 4, 8]) 3. KV-cache: Output: torch.Size([2, 2, 4, 8]) ```