--- tags: - kernels - gptoss --- # gpt-oss-metal-kernels Metal kernels that back the OpenAI GPT-OSS reference implementation, repackaged for local experiments on Apple Silicon GPUs. The GPT-OSS project distributes optimized inference primitives for the `gpt-oss-20b` and `gpt-oss-120b` open-weight models, including MXFP4-packed linear layers and fused attention paths that target Metal Performance Shaders on macOS [gpt-oss](https://github.com/openai/gpt-oss). ## Installation ```bash pip install kernels # we just need to install the kernels package ``` The package exposes Python bindings through `gpt_oss_metal_kernels.ops`; these symbols are re-exported in `gpt_oss_metal_kernels.__init__` for convenience. All kernels expect Metal (`mps`) tensors and operate in place on user-provided outputs to minimize additional allocations. ## Available Ops - `f32_bf16w_matmul`, `f32_bf16w_matmul_add` - `f32_bf16w_dense_matmul_qkv`, `f32_bf16w_dense_matmul_attn_output`, `f32_bf16w_dense_matmul_mlp_gate` - `f32_bf16w_rmsnorm` - `bf16_f32_embeddings` - `f32_rope` - `f32_bf16w_matmul_qkv` - `f32_sdpa` - `f32_topk`, `expert_routing_metadata`, `f32_scatter` For implementation details, inspect the `.metal` shader files. ## Usage & Consistency Checks Each example below compares a Metal kernel against the canonical PyTorch equivalent using shared random inputs. The snippets assume an Apple Silicon machine with an `mps` device and that `kernels` installed in the active environment. ### 1. BF16-weight matmul vs PyTorch `matmul` ```python import torch from kernels import get_kernel gptoss_kernels = get_kernel("kernels-community/gpt-oss-metal-kernels") torch.manual_seed(0) device = "mps" batch, rows, cols = 2, 128, 1024 activations = torch.randn(batch, rows, device=device, dtype=torch.float32) weights = torch.randn(rows, cols, device=device, dtype=torch.bfloat16) bias = torch.zeros(cols, device=device, dtype=torch.bfloat16) out_ref = activations @ weights.float() + bias.float() out_kernel = torch.empty(batch, cols, device=device, dtype=torch.float32) gptoss_kernels.f32_bf16w_matmul( activations, weights, bias, out_kernel, num_tokens=batch, num_cols=rows, num_rows=cols, threadgroup_size=32, ) print(out_kernel) print(out_ref) torch.testing.assert_close(out_kernel, out_ref, atol=1e-3, rtol=1e-3) ``` ### 2. RMSNorm vs PyTorch layer norm equivalent ```python from kernels import get_kernel import torch gptoss_kernels = get_kernel("kernels-community/gpt-oss-metal-kernels") device = "mps" hidden = 4096 eps = 1e-5 x = torch.randn(4, hidden, device=device, dtype=torch.float32) weight = torch.randn(hidden, device=device, dtype=torch.bfloat16) variance = x.pow(2).mean(dim=-1, keepdim=True) out_ref = (x * torch.rsqrt(variance + eps)) * weight.float() out_kernel = torch.empty_like(x) gptoss_kernels.f32_bf16w_rmsnorm(x, weight, out_kernel, epsilon=eps) print(out_kernel) print(out_ref) torch.testing.assert_close(out_kernel, out_ref, atol=1e-3, rtol=1e-3) ``` ### 3. Embedding lookup with BF16 tables ```python from kernels import get_kernel import torch device = "mps" gptoss_kernels = get_kernel("kernels-community/gpt-oss-metal-kernels") vocab, dim = 1024, 256 token_ids = torch.randint(0, vocab, (16,), device=device, dtype=torch.int32) emb_table = torch.randn(vocab, dim, device=device, dtype=torch.bfloat16) out_ref = emb_table.float().index_select(0, token_ids.long()) out_kernel = torch.empty_like(out_ref) gptoss_kernels.bf16_f32_embeddings(token_ids, emb_table, out_kernel, threadgroup_size=32) print(out_kernel) print(out_ref) torch.testing.assert_close(out_kernel, out_ref, atol=1e-4, rtol=1e-3) ``` ### 4. Scaled dot-product attention (SDPA) ```python from kernels import get_kernel import torch import torch.nn as nn device = "mps" gptoss_kernels = get_kernel("kernels-community/gpt-oss-metal-kernels") head_dim = 64 kv_heads = 8 qmul = 8 num_q_heads = kv_heads * qmul history_tokens = 3 num_q_tokens = 2 total_tokens = history_tokens + num_q_tokens max_tokens = total_tokens num_kv_tokens = history_tokens # Generate Q/K/V tensors Q_chunk = torch.randn(num_q_tokens, num_q_heads, head_dim, device=device, dtype=torch.float32) K_all = torch.randn(kv_heads, total_tokens, head_dim, device=device, dtype=torch.float32) V_all = torch.randn(kv_heads, total_tokens, head_dim, device=device, dtype=torch.float32) qkv_dim = head_dim * (num_q_heads + 2 * kv_heads) q_buffer = torch.zeros(num_q_tokens, qkv_dim, device=device, dtype=torch.float32) for t in range(num_q_tokens): q_buffer[t, : num_q_heads * head_dim] = Q_chunk[t].reshape(-1) token_idx = history_tokens + t q_buffer[ t, num_q_heads * head_dim : num_q_heads * head_dim + kv_heads * head_dim, ] = K_all[:, token_idx, :].reshape(-1) q_buffer[ t, num_q_heads * head_dim + kv_heads * head_dim :, ] = V_all[:, token_idx, :].reshape(-1) token_stride = 2 * head_dim kv_stride = token_stride * max_tokens kv_cache = torch.zeros(kv_heads, kv_stride, device=device, dtype=torch.float32) for h in range(kv_heads): for t in range(total_tokens): base = t * token_stride kv_cache[h, base : base + head_dim] = K_all[h, t] kv_cache[h, base + head_dim : base + 2 * head_dim] = V_all[h, t] sink = torch.full((num_q_heads,), -1e4, device=device, dtype=torch.bfloat16) output = torch.empty(num_q_tokens, num_q_heads, head_dim, device=device, dtype=torch.float32) gptoss_kernels.f32_sdpa( q_buffer, 0, kv_cache, 0, sink, 0, output, 0, window=total_tokens, kv_stride=kv_stride, num_q_tokens=num_q_tokens, num_kv_tokens=num_kv_tokens, num_q_heads=num_q_heads, num_kv_heads=kv_heads, head_dim=head_dim, ) ``` For this kernel, the outputs match 97% of the time, It should be related to how the reference implementation is implemented below: ```python def sdpa(Q: torch.Tensor, K: torch.Tensor, V: torch.Tensor, S: torch.Tensor, sm_scale: float, sliding_window: int = 0) -> torch.Tensor: Q = Q.reshape(Q.shape[0], Q.shape[1], -1, Q.shape[-1]) n_tokens, n_heads, q_mult, d_head = Q.shape assert K.shape == (n_tokens, n_heads, d_head) assert V.shape == (n_tokens, n_heads, d_head) K = K[:, :, None, :].expand(-1, -1, q_mult, -1) V = V[:, :, None, :].expand(-1, -1, q_mult, -1) S = S.reshape(n_heads, q_mult, 1, 1).expand(-1, -1, n_tokens, -1) mask = torch.triu(Q.new_full((n_tokens, n_tokens), -float("inf")), diagonal=1) if sliding_window > 0: mask += torch.tril( mask.new_full((n_tokens, n_tokens), -float("inf")), diagonal=-sliding_window ) QK = torch.einsum("qhmd,khmd->hmqk", Q, K) QK *= sm_scale QK += mask[None, None, :, :] QK = torch.cat([QK, S], dim=-1) W = torch.softmax(QK, dim=-1) W = W[..., :-1] attn = torch.einsum("hmqk,khmd->qhmd", W, V) return attn.reshape(n_tokens, -1) scale = head_dim ** -0.5 q_buffer_cpu = q_buffer.detach().cpu() kv_cache_cpu = kv_cache.detach().cpu() sinks_cpu = sink.detach().to(torch.float32).cpu() Q_total_cpu = torch.zeros(total_tokens, kv_heads, qmul, head_dim, dtype=torch.float32) for idx, abs_idx in enumerate(range(num_kv_tokens, total_tokens)): q_flat = q_buffer_cpu[idx, : num_q_heads * head_dim] Q_total_cpu[abs_idx] = q_flat.view(kv_heads, qmul, head_dim) K_total_cpu = torch.empty(total_tokens, kv_heads, head_dim, dtype=torch.float32) V_total_cpu = torch.empty(total_tokens, kv_heads, head_dim, dtype=torch.float32) for t in range(total_tokens): base = t * token_stride K_total_cpu[t] = kv_cache_cpu[:, base : base + head_dim] V_total_cpu[t] = kv_cache_cpu[:, base + head_dim : base + 2 * head_dim] output_ref = sdpa( Q_total_cpu, K_total_cpu, V_total_cpu, sinks_cpu, scale, sliding_window=0, ) ``` These kernels form the core of the GPT-OSS inference stack, enabling BF16 activations with MXFP4 weights while keeping latency low on Metal GPUs [gpt-oss](https://github.com/openai/gpt-oss). Use the snippets as templates when validating your own model integrations or when extending the kernel set.