File size: 7,584 Bytes
b4cad21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#pragma once
#include <stddef.h>
#include <torch/all.h>

#include <ATen/cuda/CUDAContext.h>

// clang-format will break include orders
// clang-format off
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"

#include "cutlass/cutlass.h"
#include "cutlass/gemm_coord.h"
#include "cutlass/arch/mma_sm75.h"
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"

#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"

#include "common.hpp"
// clang-format on

using namespace cute;

/*
   Epilogue functions can be defined to post-process the output before it is
   written to GPU memory.
   Epilogues must contain a public type named EVTCompute of type Sm80EVT,
   as well as a static prepare_args function that constructs an
   EVTCompute::Arguments struct.
*/

namespace vllm {

// Wrappers for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm75_to_sm80 : Kernel {
  template <typename... Args>
  CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 750 && __CUDA_ARCH__ < 800
    Kernel::invoke(std::forward<Args>(args)...);
#endif
  }
};

template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
  template <typename... Args>
  CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 890
    Kernel::invoke(std::forward<Args>(args)...);
#endif
  }
};

template <typename Kernel>
struct enable_sm89_to_sm90 : Kernel {
  template <typename... Args>
  CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 890 && __CUDA_ARCH__ < 900
    Kernel::invoke(std::forward<Args>(args)...);
#endif
  }
};
template <typename Arch, template <typename> typename ArchGuard,
          typename ElementAB_, typename ElementD_,
          template <typename, typename> typename Epilogue_, typename TileShape,
          typename WarpShape, typename InstructionShape, int32_t MainLoopStages,
          typename FP8MathOperator = cutlass::arch::OpMultiplyAdd>
struct cutlass_2x_gemm {
  using ElementAB = ElementAB_;
  using ElementD = ElementD_;

  using ElementAcc =
      typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
                                float>::type;

  using Operator =
      typename std::conditional<std::is_same_v<ElementAB, int8_t>,
                                cutlass::arch::OpMultiplyAddSaturate,
                                FP8MathOperator>::type;

  using OutputTileThreadMap =
      cutlass::epilogue::threadblock::OutputTileThreadLayout<
          TileShape, WarpShape, float, 4, 1 /* epilogue stages */
          >;

  using Epilogue = Epilogue_<ElementD, OutputTileThreadMap>;
  using EVTCompute = typename Epilogue::EVTCompute;

  using D = cutlass::epilogue::threadblock::VisitorAuxStore<
      OutputTileThreadMap, ElementD, cutlass::FloatRoundStyle::round_to_nearest,
      Stride<int64_t, Int<1>, Int<0>>>;

  using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;

  // clang-format off
  using RowMajor = typename cutlass::layout::RowMajor;
  using ColumnMajor = typename cutlass::layout::ColumnMajor;
  using KernelType =
    ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
      ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
      ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
      float, cutlass::layout::RowMajor, 4,
      ElementAcc, float, cutlass::arch::OpClassTensorOp,
      Arch,
      TileShape, WarpShape, InstructionShape,
      EVTD,
      cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
      MainLoopStages, Operator,
      1 /* epilogue stages */
      >::GemmKernel>;
  // clang-format on

  using Op = cutlass::gemm::device::GemmUniversalAdapter<KernelType>;
};

template <typename Gemm, typename... EpilogueArgs>
inline void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
                                torch::Tensor const& b,
                                EpilogueArgs&&... epilogue_params) {
  using ElementAB = typename Gemm::ElementAB;
  using ElementD = typename Gemm::ElementD;

  int32_t m = a.size(0);
  int32_t n = b.size(1);
  int32_t k = a.size(1);
  cutlass::gemm::GemmCoord problem_size{m, n, k};

  int64_t lda = a.stride(0);
  int64_t ldb = b.stride(1);
  int64_t ldc = out.stride(0);

  using StrideC = Stride<int64_t, Int<1>, Int<0>>;
  StrideC c_stride{ldc, Int<1>{}, Int<0>{}};

  auto a_ptr = static_cast<ElementAB const*>(a.data_ptr());
  auto b_ptr = static_cast<ElementAB const*>(b.data_ptr());
  auto c_ptr = static_cast<ElementD*>(out.data_ptr());

  typename Gemm::D::Arguments d_args{c_ptr, c_stride};

  using Epilogue = typename Gemm::Epilogue;
  auto evt_args =
      Epilogue::prepare_args(std::forward<EpilogueArgs>(epilogue_params)...);

  typename Gemm::EVTD::Arguments epilogue_args{
      evt_args,
      d_args,
  };

  typename Gemm::Op::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel,  // universal mode
      problem_size,                                           // problem size
      1,                                                      // batch count
      epilogue_args,
      a_ptr,
      b_ptr,
      nullptr,
      nullptr,
      0,
      0,
      0,
      0,
      lda,
      ldb,
      ldc,
      ldc};

  // Launch the CUTLASS GEMM kernel.
  typename Gemm::Op gemm_op;
  size_t workspace_size = gemm_op.get_workspace_size(args);
  auto const workspace_options =
      torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
  auto workspace = torch::empty(workspace_size, workspace_options);

  auto stream = at::cuda::getCurrentCUDAStream(a.get_device());

  CUTLASS_CHECK(gemm_op.can_implement(args));
  cutlass::Status status = gemm_op(args, workspace.data_ptr(), stream);
  CUTLASS_CHECK(status);
}

template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
inline void fallback_cutlass_gemm_caller(torch::Tensor& out,
                                         torch::Tensor const& a,
                                         torch::Tensor const& b,
                                         EpilogueArgs&&... args) {
  // In some cases, the GPU isn't able to accommodate the
  // shared memory requirements of the Gemm. In such cases, use
  // the FallbackGemm instead.
  static const int max_shared_mem_per_block_opt_in =
      get_cuda_max_shared_memory_per_block_opt_in(0);

  size_t const gemm_shared_mem_size =
      sizeof(typename Gemm::KernelType::SharedStorage);
  size_t const fallback_gemm_shared_mem_size =
      sizeof(typename FallbackGemm::KernelType::SharedStorage);

  if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
    return cutlass_gemm_caller<Gemm>(out, a, b,
                                     std::forward<EpilogueArgs>(args)...);
  } else {
    TORCH_CHECK(fallback_gemm_shared_mem_size <=
                max_shared_mem_per_block_opt_in);
    return cutlass_gemm_caller<FallbackGemm>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  }
}

}  // namespace vllm