File size: 7,584 Bytes
b4cad21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#pragma once
#include <stddef.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
// clang-format will break include orders
// clang-format off
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm_coord.h"
#include "cutlass/arch/mma_sm75.h"
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"
#include "common.hpp"
// clang-format on
using namespace cute;
/*
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace vllm {
// Wrappers for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm75_to_sm80 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 750 && __CUDA_ARCH__ < 800
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 890
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm89_to_sm90 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 890 && __CUDA_ARCH__ < 900
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Arch, template <typename> typename ArchGuard,
typename ElementAB_, typename ElementD_,
template <typename, typename> typename Epilogue_, typename TileShape,
typename WarpShape, typename InstructionShape, int32_t MainLoopStages,
typename FP8MathOperator = cutlass::arch::OpMultiplyAdd>
struct cutlass_2x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Operator =
typename std::conditional<std::is_same_v<ElementAB, int8_t>,
cutlass::arch::OpMultiplyAddSaturate,
FP8MathOperator>::type;
using OutputTileThreadMap =
cutlass::epilogue::threadblock::OutputTileThreadLayout<
TileShape, WarpShape, float, 4, 1 /* epilogue stages */
>;
using Epilogue = Epilogue_<ElementD, OutputTileThreadMap>;
using EVTCompute = typename Epilogue::EVTCompute;
using D = cutlass::epilogue::threadblock::VisitorAuxStore<
OutputTileThreadMap, ElementD, cutlass::FloatRoundStyle::round_to_nearest,
Stride<int64_t, Int<1>, Int<0>>>;
using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;
// clang-format off
using RowMajor = typename cutlass::layout::RowMajor;
using ColumnMajor = typename cutlass::layout::ColumnMajor;
using KernelType =
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
float, cutlass::layout::RowMajor, 4,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
TileShape, WarpShape, InstructionShape,
EVTD,
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
MainLoopStages, Operator,
1 /* epilogue stages */
>::GemmKernel>;
// clang-format on
using Op = cutlass::gemm::device::GemmUniversalAdapter<KernelType>;
};
template <typename Gemm, typename... EpilogueArgs>
inline void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
cutlass::gemm::GemmCoord problem_size{m, n, k};
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideC = Stride<int64_t, Int<1>, Int<0>>;
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
auto a_ptr = static_cast<ElementAB const*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB const*>(b.data_ptr());
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename Gemm::D::Arguments d_args{c_ptr, c_stride};
using Epilogue = typename Gemm::Epilogue;
auto evt_args =
Epilogue::prepare_args(std::forward<EpilogueArgs>(epilogue_params)...);
typename Gemm::EVTD::Arguments epilogue_args{
evt_args,
d_args,
};
typename Gemm::Op::Arguments args{
cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel, // universal mode
problem_size, // problem size
1, // batch count
epilogue_args,
a_ptr,
b_ptr,
nullptr,
nullptr,
0,
0,
0,
0,
lda,
ldb,
ldc,
ldc};
// Launch the CUTLASS GEMM kernel.
typename Gemm::Op gemm_op;
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
CUTLASS_CHECK(gemm_op.can_implement(args));
cutlass::Status status = gemm_op(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
inline void fallback_cutlass_gemm_caller(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
// In some cases, the GPU isn't able to accommodate the
// shared memory requirements of the Gemm. In such cases, use
// the FallbackGemm instead.
static const int max_shared_mem_per_block_opt_in =
get_cuda_max_shared_memory_per_block_opt_in(0);
size_t const gemm_shared_mem_size =
sizeof(typename Gemm::KernelType::SharedStorage);
size_t const fallback_gemm_shared_mem_size =
sizeof(typename FallbackGemm::KernelType::SharedStorage);
if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
return cutlass_gemm_caller<Gemm>(out, a, b,
std::forward<EpilogueArgs>(args)...);
} else {
TORCH_CHECK(fallback_gemm_shared_mem_size <=
max_shared_mem_per_block_opt_in);
return cutlass_gemm_caller<FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm
|