#pragma once #include "cutlass_extensions/epilogue/broadcast_load_epilogue_c2x.hpp" /* This file defines custom epilogues for fusing channel scales, token scales, bias, and activation zero-points onto a GEMM operation using the CUTLASS 2.x API, for sm80 (Ampere) NVIDIA GPUs. Epilogues must contain a public type named EVTCompute of type Sm80EVT, as well as a static prepare_args function that constructs an EVTCompute::Arguments struct. */ namespace vllm::c2x { using namespace cute; /* * This class provides the common load descriptors for the * ScaledEpilogue[...] classes */ template struct ScaledEpilogueBase { protected: using Accum = cutlass::epilogue::threadblock::VisitorAccFetch; template using ColOrScalarLoad = cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast< OutputTileThreadMap, T, Stride, Int<0>, Int<0>>>; template using RowOrScalarLoad = cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast< OutputTileThreadMap, T, Stride, Int<1>, Int<0>>>; template using ColLoad = cutlass::epilogue::threadblock::VisitorColBroadcast< OutputTileThreadMap, T, Stride, Int<0>, Int<0>>>; template using RowLoad = cutlass::epilogue::threadblock::VisitorRowBroadcast< OutputTileThreadMap, T, Stride, Int<1>, Int<0>>>; template using RowOrZeroLoad = cutlass::epilogue::threadblock::VisitorRowOrZeroBroadcast< OutputTileThreadMap, T, Stride, Int<1>, Int<0>>>; // This utility function constructs the arguments for the load descriptors // from a tensor. It can handle both row and column, as well as row/column or // scalar cases. template static auto args_from_tensor(torch::Tensor const& tensor) { using Arguments = typename Descriptor::Arguments; auto* data_ptr = static_cast(tensor.data_ptr()); if constexpr (std::is_same_v> || std::is_same_v>) { return Arguments{data_ptr, tensor.numel() != 1}; } else { // it would technically work but no use case as data_ptr is never nullptr static_assert(!std::is_same_v>); return Arguments{data_ptr}; } } // This overload handles the case where there might not be a tensor, in which // case a nullptr is passed and a constant (0) is used. template static auto args_from_tensor(std::optional const& tensor) { static_assert(std::is_same_v>); using Arguments = typename Descriptor::Arguments; auto* data_ptr = tensor ? static_cast(tensor->data_ptr()) : nullptr; return Arguments{data_ptr}; } }; /* This epilogue function defines a quantized GEMM operation similar to torch._scaled_mm. A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or per-row. B can be quantized per-tensor or per-column. Any combination of per-tensor and per-row or column is supported. A and B must have symmetric quantization (zero point == 0). So the GEMM operation is D = (a_scales * A) (b_scales * B), where the scales are applied elementwise with numpy-style broadcasting. ScaleA and ScaleB define the epilogue functions that apply the scales for the A and B operands respectively. These scales may be either per-tensor or per row or column. */ template struct ScaledEpilogue : private ScaledEpilogueBase { private: using SUPER = ScaledEpilogueBase; using Accum = typename SUPER::Accum; using ScaleA = typename SUPER::template ColOrScalarLoad; using ScaleB = typename SUPER::template RowOrScalarLoad; using Compute0 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, float, float, cutlass::FloatRoundStyle::round_to_nearest>; using EVTCompute0 = cutlass::epilogue::threadblock::Sm80EVT; using Compute1 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, ElementD, float, cutlass::FloatRoundStyle::round_to_nearest>; public: using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT; using ArgumentType = typename EVTCompute::Arguments; static ArgumentType prepare_args(torch::Tensor const& a_scales, torch::Tensor const& b_scales) { auto a_args = SUPER::template args_from_tensor(a_scales); auto b_args = SUPER::template args_from_tensor(b_scales); typename EVTCompute0::Arguments evt0_args{b_args}; return ArgumentType{a_args, evt0_args}; } }; /* * This epilogue performs the same operation as ScaledEpilogue, but adds a bias. * This bias can also be used in the per-tensor azp case, where the activation * zero point (azp) is used to compute an azp correction term, * which is folded into the bias. * * The bias tensor must be per-output channel. * ScaleA and ScaleB can be per-tensor or per-token/per-channel. */ template struct ScaledEpilogueBias : protected ScaledEpilogueBase { protected: using SUPER = ScaledEpilogueBase; using Accum = typename SUPER::Accum; using ScaleA = typename SUPER::template ColOrScalarLoad; using ScaleB = typename SUPER::template RowOrScalarLoad; using Bias = typename SUPER::template RowLoad; using Compute0 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, float, float, cutlass::FloatRoundStyle::round_to_nearest>; using EVTCompute0 = cutlass::epilogue::threadblock::Sm80EVT; using Compute1 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiply_add, ElementD, float, cutlass::FloatRoundStyle::round_to_nearest>; public: using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT; using ArgumentType = typename EVTCompute::Arguments; static ArgumentType prepare_args(torch::Tensor const& a_scales, torch::Tensor const& b_scales, torch::Tensor const& bias) { auto a_args = SUPER::template args_from_tensor(a_scales); auto b_args = SUPER::template args_from_tensor(b_scales); auto bias_args = SUPER::template args_from_tensor(bias); typename EVTCompute0::Arguments evt0_args{b_args}; return ArgumentType{a_args, evt0_args, bias_args}; } }; /* * This epilogue directly supports per-tensor azp in int32 form. * As opposed to the per-token epilogue below, this epilogue only has an azp_adj * term, which should already be multiplied with the scalar azp. * The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B. * * This epilogue also supports bias, which remains per-channel. */ template struct ScaledEpilogueBiasAzp : protected ScaledEpilogueBase { private: using SUPER = ScaledEpilogueBase; using Accum = typename SUPER::Accum; using ScaleA = typename SUPER::template ColOrScalarLoad; using ScaleB = typename SUPER::template RowOrScalarLoad; using Bias = typename SUPER::template RowOrZeroLoad; // This is the full AZP term, azp * J @ B, shape (1,n) using AzpWithAdj = typename SUPER::template RowLoad; // Compute float(accum - azp_adj), both operands are int32_t using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute< cutlass::minus, float, int32_t, cutlass::FloatRoundStyle::round_to_nearest>; using EVTComputeAzp = cutlass::epilogue::threadblock::Sm80EVT; using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, float, float, cutlass::FloatRoundStyle::round_to_nearest>; using EVTComputeScaleB = cutlass::epilogue::threadblock::Sm80EVT; using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiply_add, ElementD, float, cutlass::FloatRoundStyle::round_to_nearest>; public: using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT; using ArgumentType = typename EVTCompute::Arguments; static ArgumentType prepare_args(torch::Tensor const& a_scales, torch::Tensor const& b_scales, torch::Tensor const& azp_adj, std::optional const& bias) { auto a_args = SUPER::template args_from_tensor(a_scales); auto b_args = SUPER::template args_from_tensor(b_scales); auto bias_args = SUPER::template args_from_tensor(bias); auto azp_adj_args = SUPER::template args_from_tensor(azp_adj); typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args}; typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args}; return ArgumentType{a_args, evt_scale_b_args, bias_args}; } }; /* * This epilogue supports per-token azp by computing and applying * the correction term using a rank-1 update. If the term were materialized, * it would require O(m*n) space, and this way it only requires O(m+n) space. * The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero * point for each row of A. * The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B. * * This epilogue also supports bias, which remains per-channel. */ template struct ScaledEpilogueBiasAzpToken : protected ScaledEpilogueBase { private: using SUPER = ScaledEpilogueBase; using Accum = typename SUPER::Accum; using ScaleA = typename SUPER::template ColOrScalarLoad; using ScaleB = typename SUPER::template RowOrScalarLoad; using Bias = typename SUPER::template RowOrZeroLoad; // Per-token azp term, shape (m,1) using Azp = typename SUPER::template ColLoad; // This is the AZP adjustment term, J @ B, shape (1,n) using AzpAdj = typename SUPER::template RowLoad; // Compute azp * azp_adj using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, int32_t, int32_t, cutlass::FloatRoundStyle::round_to_nearest>; using EVTComputeAzp = cutlass::epilogue::threadblock::Sm80EVT; // Compute float(accum - azp*azp_adj), all operands are int32_t using ComputeAcc = cutlass::epilogue::threadblock::VisitorCompute< cutlass::minus, float, int32_t, cutlass::FloatRoundStyle::round_to_nearest>; using EVTComputeAcc = cutlass::epilogue::threadblock::Sm80EVT; using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, float, float, cutlass::FloatRoundStyle::round_to_nearest>; using EVTComputeScaleB = cutlass::epilogue::threadblock::Sm80EVT; using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiply_add, ElementD, float, cutlass::FloatRoundStyle::round_to_nearest>; public: using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT; using ArgumentType = typename EVTCompute::Arguments; static ArgumentType prepare_args(torch::Tensor const& a_scales, torch::Tensor const& b_scales, torch::Tensor const& azp_adj, torch::Tensor const& azp, std::optional const& bias) { auto a_args = SUPER::template args_from_tensor(a_scales); auto b_args = SUPER::template args_from_tensor(b_scales); auto bias_args = SUPER::template args_from_tensor(bias); auto azp_args = SUPER::template args_from_tensor(azp); auto azp_adj_args = SUPER::template args_from_tensor(azp_adj); typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args}; typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args}; typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args}; return ArgumentType{a_args, evt_scale_b_args, bias_args}; } }; }; // namespace vllm::c2x