--- library_name: peft language: - ja license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: Whisper Large v3 results: [] --- # Whisper Large v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0923 | 0.2151 | 20 | 0.0633 | | 0.045 | 0.4301 | 40 | 0.0610 | | 0.0664 | 0.6452 | 60 | 0.0720 | | 0.0622 | 0.8602 | 80 | 0.0552 | | 0.0589 | 1.0753 | 100 | 0.0781 | | 0.0382 | 1.2903 | 120 | 0.0480 | | 0.03 | 1.5054 | 140 | 0.0445 | | 0.022 | 1.7204 | 160 | 0.0404 | | 0.0201 | 1.9355 | 180 | 0.0387 | | 0.0131 | 2.1505 | 200 | 0.0412 | | 0.0111 | 2.3656 | 220 | 0.0366 | | 0.0111 | 2.5806 | 240 | 0.0357 | | 0.0142 | 2.7957 | 260 | 0.0346 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1