# This model can generate the solution to problem in [LeetCode](https://leetcode.com) ## The training data: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/datasets/khaimaitien/leetcode_problem_solution) ## The base model: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) You can find more information at: https://github.com/khaimt/coding_challenge_solver The prompt template is: ``` python prompt_str = ( f"[INST] Write code to solve the following coding problem that obeys" f"the constraints and passes the example test cases." f"Please wrap your code answer using ```:\n{input}\n[/INST]```python\n" ) ``` Where input is the problem in LeetCode, an example is: https://github.com/khaimt/coding_challenge_solver/blob/main/test_cases/problem1.txt **Example for inference:** ```python prompt_str = ( f"[INST] Write code to solve the following coding problem that obeys" f"the constraints and passes the example test cases." f"Please wrap your code answer using ```:\n{input}\n[/INST]```python\n" ) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16) token_ids = tokenizer([prompt_str], return_tensors="pt")["input_ids"] token_ids = token_ids.to(model.device) outputs = model.generate(input_ids=token_ids, max_new_tokens=1024, do_sample=True, temperature=0.0001) all_token_ids = outputs[0].tolist() ouput_token_ids = all_token_ids[token_ids.shape[-1] :] output = tokenizer.decode(ouput_token_ids) print("-------------Solution generated from Model---------") print(output) ```