# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import List, Optional, Tuple, Union
import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_intern_vit import InternVisionModel, has_flash_attn
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import cv2
import imageio
from scipy.ndimage import gaussian_filter
from PIL import Image, ImageDraw, ImageFont
import tqdm
import random
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
def draw_text_to_image(text, font, image_width=500, min_height=500, bg_color=(255, 255, 255)):
paragraphs = text.split('\n')
# Danh sách chứa tất cả các dòng văn bản sau khi được xử lý
lines = []
total_height = 0
for paragraph in paragraphs:
words = paragraph.split(' ')
current_line = ""
for word in words:
test_line = current_line + word + " "
bbox = font.getbbox(test_line)
width = bbox[2] - bbox[0]
if width <= image_width - 20: # Trừ lề khoảng 10px mỗi bên
current_line = test_line
else:
lines.append(current_line)
current_line = word + " "
total_height += font.getbbox(current_line)[3]
lines.append(current_line) # Thêm dòng cuối cùng của đoạn văn
total_height += font.getbbox(current_line)[3]
total_height = int(total_height*1.25)
if total_height < min_height:
total_height = min_height
image = Image.new('RGB', (image_width, total_height), color=bg_color)
draw = ImageDraw.Draw(image)
# Vẽ đoạn văn bản tiếng Việt lên ảnh, từng dòng một
text_color = tuple(random.randint(0, 1) for _ in range(3))
y_text = 10
for line in lines:
draw.text((10, y_text), line, font=font, fill=text_color)
y_text += font.getbbox(line)[3] * 1.2
return image
def load_image_v2(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio
def adjust_overlay(overlay, text_img):
h_o, w_o = overlay.shape[:2]
h_t, w_t = text_img.shape[:2]
if h_o > w_o: # Overlay là ảnh đứng
# Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
new_h = h_t
new_w = int(w_o * (new_h / h_o))
overlay_resized = cv2.resize(overlay, (new_w, new_h))
else: # Overlay là ảnh ngang
# Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
overlay_resized = overlay.copy()
# Thêm padding trắng nếu overlay có h < h_t
if overlay_resized.shape[0] < h_t:
pad_h = h_t - overlay_resized.shape[0]
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới
# Đảm bảo overlay có cùng chiều cao với text_img
if overlay_resized.shape[0] != h_t:
overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))
return overlay_resized
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_supports_flash_attn_2 = True
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
use_flash_attn = use_flash_attn if has_flash_attn else False
config.vision_config.use_flash_attn = True if use_flash_attn else False
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='
', IMG_END_TOKEN='',
IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '' not in question:
question = '\n' + question
template = get_conv_template(self.template)
template.system_message = self.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='
', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='',
verbose=False, attention_visualize=False,last_visualize_layers=7,raw_image_path="",target_aspect_ratio=(1,1)):
if history is None and pixel_values is not None and '' not in question:
question = '\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
if attention_visualize:
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
attention_visualize=attention_visualize,
output_hidden_states=True,
**generation_config
)
return generation_output, query
#################################### Attention visualize ##################################################
# attentions_tensors = []
# for tok_ in generation_output["attentions"]:
# attentions_tensors.append([])
# for lay_ in tok_ :
# attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy())
# attention_scores = attentions_tensors
# query_ = tokenizer(query)
# start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("
")["input_ids"][0])[0]+1)
# end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]-256)
# if end_img_token_index - start_img_token_index == 0 :
# end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0])
# # Đọc ảnh gốc
# image = cv2.imread(raw_image_path)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# # Resize ảnh nhỏ hơn để giảm dung lượng GIF
# scale_factor = 1. # Giảm 50% kích thước
# # Font chữ
# font = ImageFont.truetype("DejaVuSans.ttf", 15)
# alpha = 0.4
# # Lưu danh sách frames GIF
# visualization_frames = []
# # Chuỗi sinh ra
# generated_text = ""
# frame_step = 1
# # Lặp qua từng token
# for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)):
# token_text = tokenizer.decode(generation_output.sequences[0, index_focus])
# generated_text += token_text # Ghép chữ lại
# # Tạo heatmap trung bình từ các lớp attention
# heat_maps = []
# for i in range(1, 8):
# heat_maps.append(
# self.visualize_attention(
# attention_scores[index_focus], layer=-i, head=None,
# start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, target_aspect_ratio=target_aspect_ratio
# )[0]
# )
# heatmap = np.array(heat_maps).mean(0)
# # Resize heatmap về kích thước ảnh gốc
# heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
# # Làm mượt heatmap
# heatmap_smooth = gaussian_filter(heatmap, sigma=1)
# # Chuẩn hóa heatmap về 0-255
# heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
# heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)
# heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
# # Overlay ảnh heatmap lên ảnh gốc
# overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0)
# # Tạo ảnh chứa text bên phải
# text_img = draw_text_to_image(generated_text, font, image_width=600, min_height=500)
# text_img = np.array(text_img)
# # text_img = cv2.resize(np.array(text_img),(overlay.shape[1],overlay.shape[0]))
# # combined_image = np.hstack((overlay, text_img))
# ## Đảm bảo overlay và text_img có cùng kích thước
# overlay_adjusted = adjust_overlay(overlay, text_img)
# # Ghép ảnh
# combined_image = np.hstack((overlay_adjusted, text_img))
# # Lưu vào danh sách frames
# visualization_frames.append(combined_image)
# generation_output = generation_output.sequences
# response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
# response = response.split(template.sep.strip())[0].strip()
# history.append((question, response))
# if return_history:
# return response, history, visualization_frames
# else:
# query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
# query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '')
# if verbose:
# print(query_to_print, response)
# return response, visualization_frames
############################################################################################################
else:
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
attention_visualize=attention_visualize,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '')
if verbose:
print(query_to_print, response)
return response
def visualize_attention(self, attention_tensor,layer=0, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
"""Vẽ heatmap của attention scores từ layer được chọn và có thể chọn head cụ thể hoặc trung bình."""
selected_layer = attention_tensor[layer] # Chọn layer cụ thể
if head is None:
averaged_attention = selected_layer.mean(axis=1).squeeze() # Trung bình qua 14 head
else:
averaged_attention = selected_layer[:, head, :, :].squeeze() # Chọn head cụ thể
averaged_attention = np.power(averaged_attention, 0.9)
heat_maps = []
for i in range(len(averaged_attention)): # Duyệt qua 3 beam
h_target_aspect_ratio = target_aspect_ratio[1]
if h_target_aspect_ratio == 0 :
h_target_aspect_ratio = 1
w_target_aspect_ratio = target_aspect_ratio[0]
if w_target_aspect_ratio == 0 :
w_target_aspect_ratio = 1
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio,w_target_aspect_ratio,16,16)
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio*16,w_target_aspect_ratio*16)
heat_maps.append(img_atten_score)
return heat_maps
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
attention_visualize: Optional[bool] = False,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
if attention_visualize:
output_attentions = True
return_dict_in_generate = True
else:
output_attentions = False
return_dict_in_generate = False
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
output_attentions=output_attentions,
return_dict_in_generate=return_dict_in_generate,
**generate_kwargs,
)
return outputs