# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import List, Optional, Tuple, Union import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, Qwen2ForCausalLM) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from .configuration_internvl_chat import InternVLChatConfig from .conversation import get_conv_template from .modeling_intern_vit import InternVisionModel, has_flash_attn from PIL import Image, ImageDraw, ImageFont import numpy as np import cv2 import imageio from scipy.ndimage import gaussian_filter from PIL import Image, ImageDraw, ImageFont import tqdm import random logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) def draw_text_to_image(text, font, image_width=500, min_height=500, bg_color=(255, 255, 255)): paragraphs = text.split('\n') # Danh sách chứa tất cả các dòng văn bản sau khi được xử lý lines = [] total_height = 0 for paragraph in paragraphs: words = paragraph.split(' ') current_line = "" for word in words: test_line = current_line + word + " " bbox = font.getbbox(test_line) width = bbox[2] - bbox[0] if width <= image_width - 20: # Trừ lề khoảng 10px mỗi bên current_line = test_line else: lines.append(current_line) current_line = word + " " total_height += font.getbbox(current_line)[3] lines.append(current_line) # Thêm dòng cuối cùng của đoạn văn total_height += font.getbbox(current_line)[3] total_height = int(total_height*1.25) if total_height < min_height: total_height = min_height image = Image.new('RGB', (image_width, total_height), color=bg_color) draw = ImageDraw.Draw(image) # Vẽ đoạn văn bản tiếng Việt lên ảnh, từng dòng một text_color = tuple(random.randint(0, 1) for _ in range(3)) y_text = 10 for line in lines: draw.text((10, y_text), line, font=font, fill=text_color) y_text += font.getbbox(line)[3] * 1.2 return image def load_image_v2(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values, target_aspect_ratio def adjust_overlay(overlay, text_img): h_o, w_o = overlay.shape[:2] h_t, w_t = text_img.shape[:2] if h_o > w_o: # Overlay là ảnh đứng # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ new_h = h_t new_w = int(w_o * (new_h / h_o)) overlay_resized = cv2.resize(overlay, (new_w, new_h)) else: # Overlay là ảnh ngang # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng overlay_resized = overlay.copy() # Thêm padding trắng nếu overlay có h < h_t if overlay_resized.shape[0] < h_t: pad_h = h_t - overlay_resized.shape[0] padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới # Đảm bảo overlay có cùng chiều cao với text_img if overlay_resized.shape[0] != h_t: overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) return overlay_resized class InternVLChatModel(PreTrainedModel): config_class = InternVLChatConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _supports_flash_attn_2 = True _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer'] def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version use_flash_attn = use_flash_attn if has_flash_attn else False config.vision_config.use_flash_attn = True if use_flash_attn else False config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.img_context_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(template.sep.strip())[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, attention_visualize=False,last_visualize_layers=7,raw_image_path="",target_aspect_ratio=(1,1)): if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) generation_config['eos_token_id'] = eos_token_id if attention_visualize: generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, attention_visualize=attention_visualize, output_hidden_states=True, **generation_config ) return generation_output, query #################################### Attention visualize ################################################## # attentions_tensors = [] # for tok_ in generation_output["attentions"]: # attentions_tensors.append([]) # for lay_ in tok_ : # attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy()) # attention_scores = attentions_tensors # query_ = tokenizer(query) # start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]+1) # end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]-256) # if end_img_token_index - start_img_token_index == 0 : # end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]) # # Đọc ảnh gốc # image = cv2.imread(raw_image_path) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # # Resize ảnh nhỏ hơn để giảm dung lượng GIF # scale_factor = 1. # Giảm 50% kích thước # # Font chữ # font = ImageFont.truetype("DejaVuSans.ttf", 15) # alpha = 0.4 # # Lưu danh sách frames GIF # visualization_frames = [] # # Chuỗi sinh ra # generated_text = "" # frame_step = 1 # # Lặp qua từng token # for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)): # token_text = tokenizer.decode(generation_output.sequences[0, index_focus]) # generated_text += token_text # Ghép chữ lại # # Tạo heatmap trung bình từ các lớp attention # heat_maps = [] # for i in range(1, 8): # heat_maps.append( # self.visualize_attention( # attention_scores[index_focus], layer=-i, head=None, # start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, target_aspect_ratio=target_aspect_ratio # )[0] # ) # heatmap = np.array(heat_maps).mean(0) # # Resize heatmap về kích thước ảnh gốc # heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC) # # Làm mượt heatmap # heatmap_smooth = gaussian_filter(heatmap, sigma=1) # # Chuẩn hóa heatmap về 0-255 # heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) # heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET) # heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB) # # Overlay ảnh heatmap lên ảnh gốc # overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0) # # Tạo ảnh chứa text bên phải # text_img = draw_text_to_image(generated_text, font, image_width=600, min_height=500) # text_img = np.array(text_img) # # text_img = cv2.resize(np.array(text_img),(overlay.shape[1],overlay.shape[0])) # # combined_image = np.hstack((overlay, text_img)) # ## Đảm bảo overlay và text_img có cùng kích thước # overlay_adjusted = adjust_overlay(overlay, text_img) # # Ghép ảnh # combined_image = np.hstack((overlay_adjusted, text_img)) # # Lưu vào danh sách frames # visualization_frames.append(combined_image) # generation_output = generation_output.sequences # response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] # response = response.split(template.sep.strip())[0].strip() # history.append((question, response)) # if return_history: # return response, history, visualization_frames # else: # query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') # query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') # if verbose: # print(query_to_print, response) # return response, visualization_frames ############################################################################################################ else: generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, attention_visualize=attention_visualize, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep.strip())[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response def visualize_attention(self, attention_tensor,layer=0, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): """Vẽ heatmap của attention scores từ layer được chọn và có thể chọn head cụ thể hoặc trung bình.""" selected_layer = attention_tensor[layer] # Chọn layer cụ thể if head is None: averaged_attention = selected_layer.mean(axis=1).squeeze() # Trung bình qua 14 head else: averaged_attention = selected_layer[:, head, :, :].squeeze() # Chọn head cụ thể averaged_attention = np.power(averaged_attention, 0.9) heat_maps = [] for i in range(len(averaged_attention)): # Duyệt qua 3 beam h_target_aspect_ratio = target_aspect_ratio[1] if h_target_aspect_ratio == 0 : h_target_aspect_ratio = 1 w_target_aspect_ratio = target_aspect_ratio[0] if w_target_aspect_ratio == 0 : w_target_aspect_ratio = 1 img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] img_atten_score = img_atten_score.reshape(h_target_aspect_ratio,w_target_aspect_ratio,16,16) img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio*16,w_target_aspect_ratio*16) heat_maps.append(img_atten_score) return heat_maps @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, attention_visualize: Optional[bool] = False, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) if attention_visualize: output_attentions = True return_dict_in_generate = True else: output_attentions = False return_dict_in_generate = False outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, use_cache=True, output_attentions=output_attentions, return_dict_in_generate=return_dict_in_generate, **generate_kwargs, ) return outputs