--- base_model: facebook/wav2vec2-large-xlsr-53 datasets: - fleurs library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-Hindi-Version3 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: fleurs type: fleurs config: hi_in split: None args: hi_in metrics: - type: wer value: 0.282143903153373 name: Wer language: - hi pipeline_tag: automatic-speech-recognition --- # wav2vec2-large-xlsr-53-Hindi-Version3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.7311 - Wer: 0.2821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.362 | 6.7568 | 500 | 3.3795 | 1.0 | | 0.5309 | 13.5135 | 1000 | 0.5572 | 0.4268 | | 0.2342 | 20.2703 | 1500 | 0.5206 | 0.3341 | | 0.1408 | 27.0270 | 2000 | 0.5516 | 0.3292 | | 0.1126 | 33.7838 | 2500 | 0.6105 | 0.3199 | | 0.0892 | 40.5405 | 3000 | 0.6489 | 0.3123 | | 0.0721 | 47.2973 | 3500 | 0.6533 | 0.3067 | | 0.0719 | 54.0541 | 4000 | 0.6898 | 0.3050 | | 0.0592 | 60.8108 | 4500 | 0.7007 | 0.2990 | | 0.0737 | 67.5676 | 5000 | 0.7106 | 0.2921 | | 0.0399 | 74.3243 | 5500 | 0.7271 | 0.2916 | | 0.0409 | 81.0811 | 6000 | 0.7298 | 0.2871 | | 0.0322 | 87.8378 | 6500 | 0.7311 | 0.2835 | | 0.0285 | 94.5946 | 7000 | 0.7311 | 0.2821 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1