---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:2184
- loss:BatchAllTripletLoss
base_model: kiarashmo/chembberta-77m-mlm-safetensors
widget:
- source_sentence: CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1
sentences:
- C=C1CC2CCC34CC5OC6C(OC7CCC(CC(=O)CC8C(CC9OC(CCC1O2)CC(C)C9=C)OC(CC(O)CN)C8OC)OC7C6O3)C5O4
- C[NH+](C)CCC=C1c2ccccc2CCc2ccccc21
- CC(C)Cn1cnc2c(N)nc3ccccc3c21
- source_sentence: COC(=O)NC(C(=O)NC(Cc1ccccc1)C(O)CN(Cc1ccc(-c2ccccn2)cc1)NC(=O)C(NC(=O)OC)C(C)(C)C)C(C)(C)C
sentences:
- C=C1CC2CCC34CC5OC6C(OC7CCC(CC(=O)CC8C(CC9OC(CCC1O2)CC(C)C9=C)OC(CC(O)CN)C8OC)OC7C6O3)C5O4
- C[NH+]1CCCC(CC2c3ccccc3Sc3ccccc32)C1
- C[NH2+]C1(c2ccccc2Cl)CCCCC1=O
- source_sentence: C[NH+]1CC(C(=O)NC2(C)OC3(O)C4CCCN4C(=O)C(Cc4ccccc4)N3C2=O)CC2c3cccc4[nH]cc(c34)CC21
sentences:
- C[NH+](C)CCC=C1c2ccccc2COc2ccc(CC(=O)[O-])cc21
- C[NH+]1CCC(=C2c3ccccc3CCn3c(C=O)c[nH+]c32)CC1
- COC(=O)NC(C(=O)NC(Cc1ccccc1)C(O)CN(Cc1ccc(-c2ccccn2)cc1)NC(=O)C(NC(=O)OC)C(C)(C)C)C(C)(C)C
- source_sentence: C[NH2+]CCCC12CCC(c3ccccc31)c1ccccc12
sentences:
- C[N+]1(C)CCC(=C(c2ccccc2)c2ccccc2)CC1
- CC(CN1CC(=O)NC(=O)C1)[NH+]1CC(=O)NC(=O)C1
- C[NH+](C)CCc1c[nH]c2ccc(CC3COC(=O)N3)cc12
- source_sentence: CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1
sentences:
- COC(=O)NC(C(=O)NC(Cc1ccccc1)C(O)CN(Cc1ccc(-c2ccccn2)cc1)NC(=O)C(NC(=O)OC)C(C)(C)C)C(C)(C)C
- COc1ccc(C(=O)CC(=O)c2ccc(C(C)(C)C)cc2)cc1
- COC1CC(OC2C(C)C(=O)OC(C)C(C)C(OC(C)=O)C(C)C(=O)C3(CO3)CC(C)C(OC3OC(C)CC([NH+](C)C)C3OC(C)=O)C2C)OC(C)C1OC(C)=O
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on kiarashmo/chembberta-77m-mlm-safetensors
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: val sim
type: val-sim
metrics:
- type: cosine_accuracy
value: 0.611
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8879227638244629
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6980609418282548
name: Cosine F1
- type: cosine_f1_threshold
value: -0.5465683937072754
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5436893203883495
name: Cosine Precision
- type: cosine_recall
value: 0.9748549323017408
name: Cosine Recall
- type: cosine_ap
value: 0.6971622829878537
name: Cosine Ap
- type: cosine_mcc
value: 0.19032555952847827
name: Cosine Mcc
---
# SentenceTransformer based on kiarashmo/chembberta-77m-mlm-safetensors
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [kiarashmo/chembberta-77m-mlm-safetensors](https://huggingface.co/kiarashmo/chembberta-77m-mlm-safetensors). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [kiarashmo/chembberta-77m-mlm-safetensors](https://huggingface.co/kiarashmo/chembberta-77m-mlm-safetensors)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1',
'COC(=O)NC(C(=O)NC(Cc1ccccc1)C(O)CN(Cc1ccc(-c2ccccn2)cc1)NC(=O)C(NC(=O)OC)C(C)(C)C)C(C)(C)C',
'COc1ccc(C(=O)CC(=O)c2ccc(C(C)(C)C)cc2)cc1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.8293, -0.3326],
# [ 0.8293, 1.0000, -0.0993],
# [-0.3326, -0.0993, 1.0000]])
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `val-sim`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.611 |
| cosine_accuracy_threshold | 0.8879 |
| cosine_f1 | 0.6981 |
| cosine_f1_threshold | -0.5466 |
| cosine_precision | 0.5437 |
| cosine_recall | 0.9749 |
| **cosine_ap** | **0.6972** |
| cosine_mcc | 0.1903 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,184 training samples
* Columns: text
and label
* Approximate statistics based on the first 1000 samples:
| | text | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------|
| type | string | int |
| details |
CC(C)CC(NC(=O)CNC(=O)c1cc(Cl)ccc1Cl)B(O)O
| 1
|
| O=C(NCC(O)CO)c1c(I)c(C(=O)NCC(O)CO)c(I)c(N(CCO)C(=O)CO)c1I
| 0
|
| Clc1cc(Cl)c(OCC#CI)cc1Cl
| 0
|
* Loss: [BatchAllTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 282 evaluation samples
* Columns: text
and label
* Approximate statistics based on the first 282 samples:
| | text | label |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | int |
| details | CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1
| 1
|
| CC(C)Cn1cnc2c(N)nc3ccccc3c21
| 0
|
| CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(=O)(=O)c1ccc(N)cc1
| 0
|
* Loss: [BatchAllTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 100
- `warmup_steps`: 100
- `load_best_model_at_end`: True
#### All Hyperparameters