|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch HAT model.""" | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from packaging import version | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Optional, Tuple | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, CosineEmbeddingLoss | 
					
						
						|  | from torch.nn.functional import normalize | 
					
						
						|  |  | 
					
						
						|  | from transformers.file_utils import ( | 
					
						
						|  | add_code_sample_docstrings, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | ModelOutput, | 
					
						
						|  | MaskedLMOutput, | 
					
						
						|  | MultipleChoiceModelOutput, | 
					
						
						|  | QuestionAnsweringModelOutput, | 
					
						
						|  | SequenceClassifierOutput, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from transformers.models.roberta.modeling_roberta import RobertaAttention, RobertaIntermediate, RobertaOutput | 
					
						
						|  | from transformers.activations import gelu | 
					
						
						|  | from transformers import PretrainedConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "kiddothe2b/hierarchical-transformer-base-4096" | 
					
						
						|  | _CONFIG_FOR_DOC = "HATConfig" | 
					
						
						|  | _TOKENIZER_FOR_DOC = "HATTokenizer" | 
					
						
						|  |  | 
					
						
						|  | HAT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | 
					
						
						|  | "kiddothe2b/hierarchical-transformer-base-4096", | 
					
						
						|  | "kiddothe2b/adhoc-hierarchical-transformer-base-4096", | 
					
						
						|  |  | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transform_tokens2sentences(hidden_states, num_sentences, max_sentence_length): | 
					
						
						|  |  | 
					
						
						|  | seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), num_sentences, max_sentence_length, hidden_states.size(-1))) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, | 
					
						
						|  | max_sentence_length, seg_hidden_states.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states_reshape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transform_masks2sentences(hidden_states, num_sentences, max_sentence_length): | 
					
						
						|  |  | 
					
						
						|  | seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), 1, 1, num_sentences, max_sentence_length)) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, | 
					
						
						|  | 1, 1, seg_hidden_states.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states_reshape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transform_sentences2tokens(seg_hidden_states, num_sentences, max_sentence_length): | 
					
						
						|  |  | 
					
						
						|  | hidden_states = seg_hidden_states.contiguous().view(seg_hidden_states.size(0) // num_sentences, num_sentences, | 
					
						
						|  | max_sentence_length, seg_hidden_states.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.contiguous().view(hidden_states.size(0), num_sentences * max_sentence_length, | 
					
						
						|  | hidden_states.size(-1)) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class BaseModelOutputWithSentenceAttentions(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for model's outputs, with potential hidden states and attentions. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the model. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | 
					
						
						|  | of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Sentence attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class SequenceRepresentationOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for outputs of document representation models. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Classification (or regression if config.num_labels==1) loss. | 
					
						
						|  | representations (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Latent representations. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | 
					
						
						|  | shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | representations: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class HATForBoWPreTrainingOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Output type of [`HATForPreTraining`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | Total loss as the sum of pre-training losses. | 
					
						
						|  | mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The masked language modeling loss. | 
					
						
						|  | srp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The sentence representation prediction loss. | 
					
						
						|  | drp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The document representation prediction loss. | 
					
						
						|  | prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | 
					
						
						|  | shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | mlm_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | srp_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | drp_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | prediction_logits: torch.FloatTensor = None | 
					
						
						|  | document_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | sentence_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class HATForVICRegPreTrainingOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Output type of [`HATForVICRegPreTraining`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | Total loss as the sum of pre-training losses. | 
					
						
						|  | mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The masked language modeling loss. | 
					
						
						|  | sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The sentence similarity loss. | 
					
						
						|  | doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The document similarity loss. | 
					
						
						|  | prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | 
					
						
						|  | shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | mlm_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_sim_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | pre_sent_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | pre_sent_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_sim_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | pre_doc_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | pre_doc_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | prediction_logits: torch.FloatTensor = None | 
					
						
						|  | document_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | sentence_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class HATForSimCLRPreTrainingOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Output type of [`HATForSimCLRPreTraining`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | Total loss as the sum of pre-training losses. | 
					
						
						|  | mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The masked language modeling loss. | 
					
						
						|  | sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The sentence similarity loss. | 
					
						
						|  | doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | 
					
						
						|  | The document similarity loss. | 
					
						
						|  | prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | 
					
						
						|  | Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | 
					
						
						|  | shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | mlm_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_contr_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | sent_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_contr_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_std_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | doc_cov_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | prediction_logits: torch.FloatTensor = None | 
					
						
						|  | document_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | sentence_prediction_logits: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class SentenceClassifierOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for outputs of sentence classification models. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : | 
					
						
						|  | Classification loss. | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): | 
					
						
						|  | Classification scores (before SoftMax). | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  | sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | logits: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a :class:`~transformers.HAT`. | 
					
						
						|  | It is used to instantiate a HAT model according to the specified arguments, | 
					
						
						|  | defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | 
					
						
						|  | to that of the HAT `kiddothe2b/hat-base-4096 <https://huggingface.co/kiddothe2b/hat-base-4096>`__ architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | 
					
						
						|  | outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (:obj:`int`, `optional`, defaults to 30522): | 
					
						
						|  | Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | :obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or | 
					
						
						|  | :class:`~transformers.TFBertModel`. | 
					
						
						|  | max_sentences (:obj:`int`, `optional`, defaults to 64): | 
					
						
						|  | The maximum number of sentences that this model might ever be used with. | 
					
						
						|  | max_sentence_size (:obj:`int`, `optional`, defaults to 128): | 
					
						
						|  | The maximum sentence length that this model might ever be used with. | 
					
						
						|  | model_max_length (:obj:`int`, `optional`, defaults to 8192): | 
					
						
						|  | The maximum  sequence length (max_sentences * max_sentence_size) that this model might ever be used with | 
					
						
						|  | encoder_layout (:obj:`Dict`): | 
					
						
						|  | The sentence/document encoder layout. | 
					
						
						|  | hidden_size (:obj:`int`, `optional`, defaults to 768): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (:obj:`int`, `optional`, defaults to 12): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | intermediate_size (:obj:`int`, `optional`, defaults to 3072): | 
					
						
						|  | Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | 
					
						
						|  | hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, | 
					
						
						|  | :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | 
					
						
						|  | hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | 
					
						
						|  | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
						
						|  | attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
						
						|  | just in case (e.g., 512 or 1024 or 2048). | 
					
						
						|  | type_vocab_size (:obj:`int`, `optional`, defaults to 2): | 
					
						
						|  | The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or | 
					
						
						|  | :class:`~transformers.TFBertModel`. | 
					
						
						|  | initializer_range (:obj:`float`, `optional`, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): | 
					
						
						|  | Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, | 
					
						
						|  | :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on | 
					
						
						|  | :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) | 
					
						
						|  | <https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to | 
					
						
						|  | `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) | 
					
						
						|  | <https://arxiv.org/abs/2009.13658>`__. | 
					
						
						|  | use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if ``config.is_decoder=True``. | 
					
						
						|  | classifier_dropout (:obj:`float`, `optional`): | 
					
						
						|  | The dropout ratio for the classification head. | 
					
						
						|  | """ | 
					
						
						|  | model_type = "hierarchical-transformer" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=30522, | 
					
						
						|  | hidden_size=768, | 
					
						
						|  | max_sentences=64, | 
					
						
						|  | max_sentence_size=128, | 
					
						
						|  | model_max_length=8192, | 
					
						
						|  | num_hidden_layers=12, | 
					
						
						|  | num_attention_heads=12, | 
					
						
						|  | intermediate_size=3072, | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | hidden_dropout_prob=0.1, | 
					
						
						|  | attention_probs_dropout_prob=0.1, | 
					
						
						|  | max_position_embeddings=512, | 
					
						
						|  | type_vocab_size=2, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | layer_norm_eps=1e-12, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | position_embedding_type="absolute", | 
					
						
						|  | encoder_layout=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | classifier_dropout=None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(pad_token_id=pad_token_id, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.max_sentences = max_sentences | 
					
						
						|  | self.max_sentence_size = max_sentence_size | 
					
						
						|  | self.model_max_length = model_max_length | 
					
						
						|  | self.encoder_layout = encoder_layout | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.hidden_dropout_prob = hidden_dropout_prob | 
					
						
						|  | self.attention_probs_dropout_prob = attention_probs_dropout_prob | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.type_vocab_size = type_vocab_size | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.position_embedding_type = position_embedding_type | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.classifier_dropout = classifier_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATEmbeddings(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) | 
					
						
						|  | self.position_embeddings = nn.Embedding(config.max_sentence_length + self.padding_idx + 1, config.hidden_size, padding_idx=self.padding_idx) | 
					
						
						|  | self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | 
					
						
						|  | self.register_buffer("position_ids", torch.arange(self.padding_idx + 1, | 
					
						
						|  | config.max_sentence_length + self.padding_idx + 1).repeat(config.max_sentences).expand((1, -1))) | 
					
						
						|  | if version.parse(torch.__version__) > version.parse("1.6.0"): | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "token_type_ids", | 
					
						
						|  | torch.zeros(self.position_ids.size(), dtype=torch.long), | 
					
						
						|  | persistent=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | ): | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, self.position_ids) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | else: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  |  | 
					
						
						|  | seq_length = input_shape[1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if token_type_ids is None: | 
					
						
						|  | if hasattr(self, "token_type_ids"): | 
					
						
						|  | buffered_token_type_ids = self.token_type_ids[:, :seq_length] | 
					
						
						|  | buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | 
					
						
						|  | token_type_ids = buffered_token_type_ids_expanded | 
					
						
						|  | else: | 
					
						
						|  | token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  | token_type_embeddings = self.token_type_embeddings(token_type_ids) | 
					
						
						|  |  | 
					
						
						|  | embeddings = inputs_embeds + token_type_embeddings | 
					
						
						|  | if self.position_embedding_type == "absolute": | 
					
						
						|  | position_embeddings = self.position_embeddings(position_ids) | 
					
						
						|  | embeddings += position_embeddings | 
					
						
						|  | embeddings = self.LayerNorm(embeddings) | 
					
						
						|  | embeddings = self.dropout(embeddings) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  | def create_position_ids_from_inputs_embeds(self, inputs_embeds): | 
					
						
						|  | """ | 
					
						
						|  | We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | inputs_embeds: torch.Tensor | 
					
						
						|  |  | 
					
						
						|  | Returns: torch.Tensor | 
					
						
						|  | """ | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | sequence_length = input_shape[1] | 
					
						
						|  |  | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | return position_ids.unsqueeze(0).expand(input_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATLayer(nn.Module): | 
					
						
						|  | def __init__(self, config, use_sentence_encoder=True, use_document_encoder=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  | self.max_sentences = config.max_sentences | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.use_document_encoder = use_document_encoder | 
					
						
						|  | self.use_sentence_encoder = use_sentence_encoder | 
					
						
						|  | if self.use_sentence_encoder: | 
					
						
						|  | self.sentence_encoder = TransformerLayer(config) | 
					
						
						|  | if self.use_document_encoder: | 
					
						
						|  | self.document_encoder = TransformerLayer(config) | 
					
						
						|  | self.position_embeddings = nn.Embedding(config.max_sentences+1, config.hidden_size, | 
					
						
						|  | padding_idx=config.pad_token_id) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | num_sentences=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | sentence_outputs = (None, None) | 
					
						
						|  | if self.use_sentence_encoder: | 
					
						
						|  |  | 
					
						
						|  | sentence_inputs = transform_tokens2sentences(hidden_states, | 
					
						
						|  | num_sentences=num_sentences, | 
					
						
						|  | max_sentence_length=self.max_sentence_length) | 
					
						
						|  | sentence_masks = transform_masks2sentences(attention_mask, | 
					
						
						|  | num_sentences=num_sentences, | 
					
						
						|  | max_sentence_length=self.max_sentence_length) | 
					
						
						|  |  | 
					
						
						|  | sentence_outputs = self.sentence_encoder(sentence_inputs, | 
					
						
						|  | sentence_masks, | 
					
						
						|  | output_attentions=output_attentions) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = transform_sentences2tokens(sentence_outputs[0], | 
					
						
						|  | num_sentences=num_sentences, | 
					
						
						|  | max_sentence_length=self.max_sentence_length) | 
					
						
						|  | else: | 
					
						
						|  | outputs = hidden_states | 
					
						
						|  |  | 
					
						
						|  | document_outputs = (None, None) | 
					
						
						|  | if self.use_document_encoder: | 
					
						
						|  |  | 
					
						
						|  | sentence_global_tokens = outputs[:, ::self.max_sentence_length].clone() | 
					
						
						|  | sentence_attention_mask = attention_mask[:, :, :, ::self.max_sentence_length].clone() | 
					
						
						|  |  | 
					
						
						|  | sentence_positions = torch.arange(1, num_sentences+1).repeat(outputs.size(0), 1).to(outputs.device) \ | 
					
						
						|  | * (sentence_attention_mask.reshape(-1, num_sentences) >= -100).int().to(outputs.device) | 
					
						
						|  | outputs[:, ::self.max_sentence_length] += self.position_embeddings(sentence_positions) | 
					
						
						|  |  | 
					
						
						|  | document_outputs = self.document_encoder(sentence_global_tokens, | 
					
						
						|  | sentence_attention_mask, | 
					
						
						|  | output_attentions=output_attentions) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs[:, ::self.max_sentence_length] = document_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | return outputs, sentence_outputs[1], document_outputs[1] | 
					
						
						|  |  | 
					
						
						|  | return outputs, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TransformerLayer(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.chunk_size_feed_forward = config.chunk_size_feed_forward | 
					
						
						|  | self.seq_len_dim = 1 | 
					
						
						|  | self.attention = RobertaAttention(config) | 
					
						
						|  | self.is_decoder = config.is_decoder | 
					
						
						|  | self.intermediate = RobertaIntermediate(config) | 
					
						
						|  | self.output = RobertaOutput(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | self_attention_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | outputs = self_attention_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | intermediate_output = self.intermediate(attention_output) | 
					
						
						|  | layer_output = self.output(intermediate_output, attention_output) | 
					
						
						|  | outputs = (layer_output,) + outputs | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATEncoder(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer = nn.ModuleList([HATLayer(config, | 
					
						
						|  | use_sentence_encoder=self.config.encoder_layout[str(idx)]['sentence_encoder'], | 
					
						
						|  | use_document_encoder=self.config.encoder_layout[str(idx)]['document_encoder']) | 
					
						
						|  | for idx in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | num_sentences=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ): | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  | all_sentence_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | for i, layer_module in enumerate(self.layer): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(layer_module), | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | num_sentences, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attentions = all_self_attentions + (layer_outputs[1],) | 
					
						
						|  | all_sentence_attentions = all_sentence_attentions + (layer_outputs[2],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [ | 
					
						
						|  | hidden_states, | 
					
						
						|  | all_hidden_states, | 
					
						
						|  | all_self_attentions, | 
					
						
						|  | all_sentence_attentions | 
					
						
						|  | ] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithSentenceAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | sentence_attentions=all_sentence_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | """ | 
					
						
						|  | Tie the weights between sentence positional embeddings across all layers. | 
					
						
						|  | If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the | 
					
						
						|  | weights instead. | 
					
						
						|  | """ | 
					
						
						|  | original_position_embeddings = None | 
					
						
						|  | for module in self.layer: | 
					
						
						|  | if hasattr(module, "position_embeddings"): | 
					
						
						|  | assert hasattr(module.position_embeddings, "weight") | 
					
						
						|  | if original_position_embeddings is None: | 
					
						
						|  | original_position_embeddings = module.position_embeddings | 
					
						
						|  | if self.config.torchscript: | 
					
						
						|  | module.position_embeddings.weight = nn.Parameter(original_position_embeddings.weight.clone()) | 
					
						
						|  | else: | 
					
						
						|  | module.position_embeddings.weight = original_position_embeddings.weight | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = HATConfig | 
					
						
						|  | base_model_prefix = "hat" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  | def _set_gradient_checkpointing(self, module, value=False): | 
					
						
						|  | if isinstance(module, HATEncoder): | 
					
						
						|  | module.gradient_checkpointing = value | 
					
						
						|  |  | 
					
						
						|  | def update_keys_to_ignore(self, config, del_keys_to_ignore): | 
					
						
						|  | """Remove some keys from ignore list""" | 
					
						
						|  | if not config.tie_word_embeddings: | 
					
						
						|  |  | 
					
						
						|  | self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] | 
					
						
						|  | self._keys_to_ignore_on_load_missing = [ | 
					
						
						|  | k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_config(cls, config): | 
					
						
						|  | return cls._from_config(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HAT_START_DOCSTRING = r""" | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`HATConfig`]): Model configuration class with all the parameters of the | 
					
						
						|  | model. Initializing with a config file does not load the weights associated with the model, only the | 
					
						
						|  | configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | HAT_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `({0})`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`HATTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | 
					
						
						|  | 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 0 corresponds to a *sentence A* token, | 
					
						
						|  | - 1 corresponds to a *sentence B* token. | 
					
						
						|  |  | 
					
						
						|  | [What are token type IDs?](../glossary#token-type-ids) | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.max_position_embeddings - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttentivePooling(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attn_dropout = config.hidden_dropout_prob | 
					
						
						|  | self.lin_proj = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.v = nn.Linear(config.hidden_size, 1, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, inputs): | 
					
						
						|  | lin_out = self.lin_proj(inputs) | 
					
						
						|  | attention_weights = torch.tanh(self.v(lin_out)).squeeze(-1) | 
					
						
						|  | attention_weights_normalized = torch.softmax(attention_weights, -1) | 
					
						
						|  | return torch.sum(attention_weights_normalized.unsqueeze(-1) * inputs, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATPooler(nn.Module): | 
					
						
						|  | def __init__(self, config, pooling='max'): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.pooling = pooling | 
					
						
						|  | if self.pooling == 'attentive': | 
					
						
						|  | self.attentive_pooling = AttentivePooling(config) | 
					
						
						|  | self.activation = nn.Tanh() | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | if self.pooling == 'attentive': | 
					
						
						|  | pooled_output = self.attentive_pooling(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | pooled_output = torch.max(hidden_states, dim=1)[0] | 
					
						
						|  | pooled_output = self.dense(pooled_output) | 
					
						
						|  | pooled_output = self.activation(pooled_output) | 
					
						
						|  | return pooled_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATSentencizer(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.activation = nn.Tanh() | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | sentence_repr_hidden_states = hidden_states[:, ::self.max_sentence_length] | 
					
						
						|  | sentence_outputs = self.dense(sentence_repr_hidden_states) | 
					
						
						|  | sentence_outputs = self.activation(sentence_outputs) | 
					
						
						|  | return sentence_outputs | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare HAT Model transformer outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModel(HATPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | 
					
						
						|  | cross-attention is added between the self-attention layers, following the architecture described in *Attention is | 
					
						
						|  | all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz | 
					
						
						|  | Kaiser and Illia Polosukhin. | 
					
						
						|  |  | 
					
						
						|  | To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | 
					
						
						|  | to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | 
					
						
						|  | `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | 
					
						
						|  |  | 
					
						
						|  | .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = HATEmbeddings(config) | 
					
						
						|  | self.encoder = HATEncoder(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embeddings.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.layer[layer].attention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=BaseModelOutputWithSentenceAttentions, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones(((batch_size, seq_length)), device=device) | 
					
						
						|  |  | 
					
						
						|  | if token_type_ids is None: | 
					
						
						|  | if hasattr(self.embeddings, "token_type_ids"): | 
					
						
						|  | buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | 
					
						
						|  | buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | 
					
						
						|  | token_type_ids = buffered_token_type_ids_expanded | 
					
						
						|  | else: | 
					
						
						|  | token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_batch_sentences = input_ids.shape[-1] // self.config.max_sentence_length | 
					
						
						|  |  | 
					
						
						|  | embedding_output = self.embeddings( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | ) | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | embedding_output, | 
					
						
						|  | attention_mask=extended_attention_mask, | 
					
						
						|  | num_sentences=num_batch_sentences, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = encoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (sequence_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithSentenceAttentions( | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | sentence_attentions=encoder_outputs.sentence_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATLMHead(nn.Module): | 
					
						
						|  | """HAT Head for masked language modeling.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | 
					
						
						|  | self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | 
					
						
						|  | self.decoder.bias = self.bias | 
					
						
						|  |  | 
					
						
						|  | def forward(self, features, **kwargs): | 
					
						
						|  | x = self.dense(features) | 
					
						
						|  | x = gelu(x) | 
					
						
						|  | x = self.layer_norm(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.decoder(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  |  | 
					
						
						|  | self.bias = self.decoder.bias | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATSentenceHead(nn.Module): | 
					
						
						|  | """HAT Head for masked language modeling.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.decoder = nn.Linear(config.hidden_size, config.sentence_embedding_size) | 
					
						
						|  | self.bias = nn.Parameter(torch.zeros(config.sentence_embedding_size)) | 
					
						
						|  | self.decoder.bias = self.bias | 
					
						
						|  |  | 
					
						
						|  | def forward(self, features): | 
					
						
						|  | x = gelu(features) | 
					
						
						|  | x = self.layer_norm(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.decoder(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  |  | 
					
						
						|  | self.bias = self.decoder.bias | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATSiameseHead(nn.Module): | 
					
						
						|  | """HAT Head for masked language modeling.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size * 2, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, features): | 
					
						
						|  | x = self.dense(features) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings("""HAT Model with a `language modeling` head on top.""", HAT_START_DOCSTRING) | 
					
						
						|  | class HATForMaskedLM(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"pooler"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | self.lm_head = HATLMHead(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head.decoder | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head.decoder = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.hi_transformer.embeddings.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.hi_transformer.embeddings.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def _tie_or_clone_weights(self, output_embeddings, input_embeddings): | 
					
						
						|  | """Tie or clone module weights depending of whether we are using TorchScript or not""" | 
					
						
						|  | if self.config.torchscript: | 
					
						
						|  | output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) | 
					
						
						|  | else: | 
					
						
						|  | output_embeddings.weight = input_embeddings.weight | 
					
						
						|  |  | 
					
						
						|  | if getattr(output_embeddings, "bias", None) is not None: | 
					
						
						|  | output_embeddings.bias.data = nn.functional.pad( | 
					
						
						|  | output_embeddings.bias.data, | 
					
						
						|  | ( | 
					
						
						|  | 0, | 
					
						
						|  | output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], | 
					
						
						|  | ), | 
					
						
						|  | "constant", | 
					
						
						|  | 0, | 
					
						
						|  | ) | 
					
						
						|  | if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | 
					
						
						|  | output_embeddings.out_features = input_embeddings.num_embeddings | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=MaskedLMOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | mask="<mask>", | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | 
					
						
						|  | config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | 
					
						
						|  | loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | 
					
						
						|  | kwargs (`Dict[str, any]`, optional, defaults to *{}*): | 
					
						
						|  | Used to hide legacy arguments that have been deprecated. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | prediction_scores = self.lm_head(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (prediction_scores,) + outputs[2:] | 
					
						
						|  | return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MaskedLMOutput( | 
					
						
						|  | loss=masked_lm_loss, | 
					
						
						|  | logits=prediction_scores, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HATModelForDocumentRepresentation(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, pooling='max'): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.config = config | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | self.pooler = HATPooler(config, pooling=pooling) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=SequenceClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | pooled_outputs = self.pooler(sequence_output[:, ::self.max_sentence_length]) | 
					
						
						|  |  | 
					
						
						|  | drp_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | drp_loss = loss_fct(pooled_outputs, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_outputs,) + outputs[2:] | 
					
						
						|  | return ((drp_loss,) + output) if drp_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceRepresentationOutput( | 
					
						
						|  | loss=drp_loss, | 
					
						
						|  | representations=pooled_outputs, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModelForMaskedSentenceRepresentation(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | self.sentencizer = HATSentencizer(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=SequenceClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | sentence_outputs = self.sentencizer(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | srp_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | srp_loss = loss_fct(sentence_outputs, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (sentence_outputs,) + outputs[2:] | 
					
						
						|  | return ((srp_loss,) + output) if srp_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceRepresentationOutput( | 
					
						
						|  | loss=srp_loss, | 
					
						
						|  | representations=sentence_outputs, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document | 
					
						
						|  | representation prediction ` head and a `masked sentence representation prediction ` head. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModelForBoWPreTraining(HATPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | if self.config.mlm or self.config.mslm: | 
					
						
						|  | self.lm_head = HATLMHead(config) | 
					
						
						|  | if self.config.srp or self.config.srp: | 
					
						
						|  | self.sentencizer = HATSentencizer(config) | 
					
						
						|  | if self.config.drp: | 
					
						
						|  | self.pooler = HATPooler(config, pooling='max') | 
					
						
						|  | self.document_cls = nn.Linear(config.hidden_size, config.vocab_size) | 
					
						
						|  | if self.config.srp: | 
					
						
						|  | self.sentence_cls = nn.Linear(config.hidden_size, config.vocab_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | document_labels=None, | 
					
						
						|  | sentence_labels=None, | 
					
						
						|  | sentence_masks=None, | 
					
						
						|  | sentence_mask_ids=None, | 
					
						
						|  | document_mask_ids=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prediction_scores = None | 
					
						
						|  | if self.config.mlm or self.config.mslm: | 
					
						
						|  | prediction_scores = self.lm_head(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | if self.config.srp or self.config.drp: | 
					
						
						|  | sentence_outputs = self.sentencizer(sequence_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sentence_prediction_scores = None | 
					
						
						|  | if self.config.srp: | 
					
						
						|  | sentence_prediction_scores = self.sentence_cls(sentence_outputs) | 
					
						
						|  | if sentence_mask_ids is not None: | 
					
						
						|  | sentence_prediction_scores = sentence_prediction_scores[:, :, sentence_mask_ids].clone() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | document_prediction_scores = None | 
					
						
						|  | if self.config.drp: | 
					
						
						|  | pooled_outputs = self.pooler(sentence_outputs) | 
					
						
						|  | document_prediction_scores = self.document_cls(pooled_outputs) | 
					
						
						|  | if document_mask_ids is not None: | 
					
						
						|  | document_prediction_scores = document_prediction_scores[:, document_mask_ids].clone() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | 
					
						
						|  | total_loss = masked_lm_loss.clone() | 
					
						
						|  |  | 
					
						
						|  | drp_loss = None | 
					
						
						|  | if document_labels is not None: | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | drp_loss = loss_fct(document_prediction_scores, document_labels) | 
					
						
						|  | if labels is not None: | 
					
						
						|  | total_loss += drp_loss | 
					
						
						|  | else: | 
					
						
						|  | total_loss = drp_loss | 
					
						
						|  |  | 
					
						
						|  | srp_loss = None | 
					
						
						|  | if sentence_labels is not None: | 
					
						
						|  | if self.config.sentence_embedding_size != self.config.vocab_size: | 
					
						
						|  | loss_fct = CosineEmbeddingLoss() | 
					
						
						|  | srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | 
					
						
						|  | sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | 
					
						
						|  | torch.ones((sentence_masks.view(-1).sum(), ), device=sentence_masks.device)) | 
					
						
						|  | else: | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | 
					
						
						|  | sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()]) | 
					
						
						|  | if labels is not None or document_labels is not None: | 
					
						
						|  | total_loss += srp_loss | 
					
						
						|  | else: | 
					
						
						|  | total_loss = srp_loss | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (prediction_scores,) + outputs[2:] | 
					
						
						|  | return ((total_loss, masked_lm_loss, srp_loss, drp_loss) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return HATForBoWPreTrainingOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | mlm_loss=masked_lm_loss, | 
					
						
						|  | srp_loss=srp_loss, | 
					
						
						|  | drp_loss=drp_loss, | 
					
						
						|  | prediction_logits=prediction_scores, | 
					
						
						|  | document_prediction_logits=document_prediction_scores, | 
					
						
						|  | sentence_prediction_logits=sentence_prediction_scores, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `sentence | 
					
						
						|  | projection head` head and a document projection head` head. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModelForVICRegPreTraining(HATPreTrainedModel): | 
					
						
						|  | def __init__(self, config, | 
					
						
						|  | document_regularization=True, | 
					
						
						|  | sentence_regularization=True): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.document_regularization = document_regularization | 
					
						
						|  | self.sentence_regularization = sentence_regularization | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | if self.config.mlm: | 
					
						
						|  | self.lm_head = HATLMHead(config) | 
					
						
						|  | if self.config.sent_sim or self.config.doc_sim: | 
					
						
						|  | self.sentencizer = HATSentencizer(config) | 
					
						
						|  | self.cosine = nn.CosineSimilarity(dim=1) | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  | self.pooler = HATPooler(config, pooling='max') | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | secondary_input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | secondary_labels=None, | 
					
						
						|  | sentence_masks=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | primary_outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | secondary_outputs = self.hi_transformer( | 
					
						
						|  | secondary_input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_sequence_output = primary_outputs[0] | 
					
						
						|  | secondary_sequence_output = secondary_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_prediction_scores = None | 
					
						
						|  | secondary_prediction_scores = None | 
					
						
						|  | if self.config.mlm: | 
					
						
						|  | primary_prediction_scores = self.lm_head(primary_sequence_output) | 
					
						
						|  | if secondary_labels is not None: | 
					
						
						|  | secondary_prediction_scores = self.lm_head(secondary_sequence_output) | 
					
						
						|  |  | 
					
						
						|  | if self.config.sent_sim or self.config.doc_sim: | 
					
						
						|  | primary_sentence_outputs = self.sentencizer(primary_sequence_output) | 
					
						
						|  | secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  | primary_pooled_outputs = self.pooler(primary_sentence_outputs) | 
					
						
						|  | secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | 
					
						
						|  | total_loss = masked_lm_loss.clone() / 2 | 
					
						
						|  | if secondary_labels is not None: | 
					
						
						|  | masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) | 
					
						
						|  | total_loss += masked_lm_loss / 2 | 
					
						
						|  |  | 
					
						
						|  | sent_sim_loss = None | 
					
						
						|  | sent_std_loss = None | 
					
						
						|  | sent_cov_loss = None | 
					
						
						|  | pre_sent_std_loss = None | 
					
						
						|  | pre_sent_cov_loss = None | 
					
						
						|  | if self.config.sent_sim: | 
					
						
						|  |  | 
					
						
						|  | sent_sim_loss = 1 - self.cosine( | 
					
						
						|  | primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | 
					
						
						|  | secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)).mean() | 
					
						
						|  |  | 
					
						
						|  | sent_std_loss, sent_cov_loss = vic_reg( | 
					
						
						|  | primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | 
					
						
						|  | secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  | total_loss += sent_sim_loss | 
					
						
						|  | else: | 
					
						
						|  | total_loss = sent_sim_loss | 
					
						
						|  | if self.sentence_regularization: | 
					
						
						|  | total_loss += sent_std_loss + (0.1 * sent_cov_loss) | 
					
						
						|  |  | 
					
						
						|  | doc_sim_loss = None | 
					
						
						|  | doc_std_loss = None | 
					
						
						|  | doc_cov_loss = None | 
					
						
						|  | pre_doc_std_loss = None | 
					
						
						|  | pre_doc_cov_loss = None | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  |  | 
					
						
						|  | doc_sim_loss = 1 - self.cosine(primary_pooled_outputs, secondary_pooled_outputs).mean() | 
					
						
						|  |  | 
					
						
						|  | doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) | 
					
						
						|  | total_loss += doc_sim_loss | 
					
						
						|  | if self.document_regularization: | 
					
						
						|  | total_loss += doc_std_loss + (0.1 * doc_cov_loss) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (primary_prediction_scores,) + primary_outputs[2:] | 
					
						
						|  | return ((total_loss, masked_lm_loss, sent_sim_loss, doc_sim_loss) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return HATForVICRegPreTrainingOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | mlm_loss=masked_lm_loss, | 
					
						
						|  | sent_sim_loss=sent_sim_loss, | 
					
						
						|  | sent_std_loss=sent_std_loss, | 
					
						
						|  | sent_cov_loss=sent_cov_loss, | 
					
						
						|  | pre_sent_std_loss=pre_sent_std_loss, | 
					
						
						|  | pre_sent_cov_loss=pre_sent_cov_loss, | 
					
						
						|  | doc_sim_loss=doc_sim_loss, | 
					
						
						|  | doc_std_loss=doc_std_loss, | 
					
						
						|  | doc_cov_loss=doc_cov_loss, | 
					
						
						|  | pre_doc_std_loss=pre_doc_std_loss, | 
					
						
						|  | pre_doc_cov_loss=pre_doc_cov_loss, | 
					
						
						|  | prediction_logits=primary_prediction_scores, | 
					
						
						|  | hidden_states=primary_outputs.hidden_states, | 
					
						
						|  | attentions=primary_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document | 
					
						
						|  | representation prediction ` head and a `masked sentence representation prediction ` head. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModelForSimCLRPreTraining(HATPreTrainedModel): | 
					
						
						|  | def __init__(self, config, | 
					
						
						|  | document_regularization=True, | 
					
						
						|  | sentence_regularization=True): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.document_regularization = document_regularization | 
					
						
						|  | self.sentence_regularization = sentence_regularization | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | if self.config.mlm: | 
					
						
						|  | self.lm_head = HATLMHead(config) | 
					
						
						|  | if self.config.sent_sim or self.config.doc_sim: | 
					
						
						|  | self.sentencizer = HATSentencizer(config) | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  | self.pooler = HATPooler(config, pooling='max') | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | secondary_input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | secondary_labels=None, | 
					
						
						|  | sentence_masks=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | primary_outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | secondary_outputs = self.hi_transformer( | 
					
						
						|  | secondary_input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_sequence_output = primary_outputs[0] | 
					
						
						|  | secondary_sequence_output = secondary_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_prediction_scores = None | 
					
						
						|  | secondary_prediction_scores = None | 
					
						
						|  | if self.config.mlm: | 
					
						
						|  | primary_prediction_scores = self.lm_head(primary_sequence_output) | 
					
						
						|  | if secondary_labels is not None: | 
					
						
						|  | secondary_prediction_scores = self.lm_head(secondary_sequence_output) | 
					
						
						|  |  | 
					
						
						|  | if self.config.sent_sim or self.config.doc_sim: | 
					
						
						|  | primary_sentence_outputs = self.sentencizer(primary_sequence_output) | 
					
						
						|  | secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  | primary_pooled_outputs = self.pooler(primary_sentence_outputs) | 
					
						
						|  | secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | 
					
						
						|  | total_loss = masked_lm_loss.clone() / 2 | 
					
						
						|  | if secondary_labels is not None: | 
					
						
						|  | masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) | 
					
						
						|  | total_loss += masked_lm_loss / 2 | 
					
						
						|  |  | 
					
						
						|  | sent_contr_loss = None | 
					
						
						|  | sent_std_loss = None | 
					
						
						|  | sent_cov_loss = None | 
					
						
						|  | if self.config.sent_sim: | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  |  | 
					
						
						|  | flatten_sentence_masks = sentence_masks.view(-1) | 
					
						
						|  | flatten_primary_sentence_outputs = primary_sentence_outputs.view(-1, self.config.hidden_size) | 
					
						
						|  | flatten_secondary_sentence_outputs = secondary_sentence_outputs.view(-1, self.config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | flatten_primary_sentence_outputs = normalize(flatten_primary_sentence_outputs) | 
					
						
						|  | flatten_secondary_sentence_outputs = normalize(flatten_secondary_sentence_outputs) | 
					
						
						|  | sentence_queue = torch.cat([flatten_primary_sentence_outputs, flatten_secondary_sentence_outputs], dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_sent_contrast_logits = torch.matmul(flatten_primary_sentence_outputs, sentence_queue.T) / self.config.temperature | 
					
						
						|  | secondary_sent_contrast_logits = torch.matmul(flatten_secondary_sentence_outputs, sentence_queue.T) / self.config.temperature | 
					
						
						|  |  | 
					
						
						|  | batch_size = primary_sent_contrast_logits.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) | 
					
						
						|  | primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) | 
					
						
						|  | secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) | 
					
						
						|  |  | 
					
						
						|  | primary_sent_contrast_logits += (primary_logits_mask * -1e3) | 
					
						
						|  | secondary_sent_contrast_logits += (secondary_logits_mask * -1e3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 | 
					
						
						|  | primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_sentence_labels = torch.arange(batch_size).to(input_ids.device) + batch_size | 
					
						
						|  | primary_sentence_labels[~flatten_sentence_masks] = -100 | 
					
						
						|  | secondary_sentence_labels = torch.arange(batch_size).to(input_ids.device) | 
					
						
						|  | secondary_sentence_labels[~flatten_sentence_masks] = -100 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sent_contr_loss = (loss_fct(primary_sent_contrast_logits, primary_sentence_labels) + | 
					
						
						|  | loss_fct(secondary_sent_contrast_logits, secondary_sentence_labels)) * 0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sent_std_loss, sent_cov_loss = vic_reg( | 
					
						
						|  | primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | 
					
						
						|  | secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) | 
					
						
						|  | if labels is not None: | 
					
						
						|  | total_loss += sent_contr_loss | 
					
						
						|  | else: | 
					
						
						|  | total_loss = sent_contr_loss | 
					
						
						|  | if self.sentence_regularization: | 
					
						
						|  | total_loss += sent_std_loss + (0.1 * sent_cov_loss) | 
					
						
						|  |  | 
					
						
						|  | doc_contr_loss = None | 
					
						
						|  | doc_std_loss = None | 
					
						
						|  | doc_cov_loss = None | 
					
						
						|  | if self.config.doc_sim: | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  |  | 
					
						
						|  | primary_pooled_outputs = normalize(primary_pooled_outputs) | 
					
						
						|  | secondary_pooled_outputs = normalize(secondary_pooled_outputs) | 
					
						
						|  | document_queue = torch.cat([primary_pooled_outputs, secondary_pooled_outputs], dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_doc_contrast_logits = torch.matmul(primary_pooled_outputs, document_queue.T) / self.config.temperature | 
					
						
						|  | secondary_doc_contrast_logits = torch.matmul(secondary_pooled_outputs, document_queue.T) / self.config.temperature | 
					
						
						|  |  | 
					
						
						|  | batch_size = primary_doc_contrast_logits.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) | 
					
						
						|  | primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) | 
					
						
						|  | secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) | 
					
						
						|  |  | 
					
						
						|  | primary_doc_contrast_logits += (primary_logits_mask * -1e3) | 
					
						
						|  | secondary_doc_contrast_logits += (secondary_logits_mask * -1e3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | primary_doc_labels = torch.arange(batch_size).to(input_ids.device) + batch_size | 
					
						
						|  | secondary_doc_labels = torch.arange(batch_size).to(input_ids.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | doc_contr_loss = (loss_fct(primary_doc_contrast_logits, primary_doc_labels) + | 
					
						
						|  | loss_fct(secondary_doc_contrast_logits, secondary_doc_labels)) * 0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) | 
					
						
						|  | if labels is not None: | 
					
						
						|  | total_loss += doc_contr_loss | 
					
						
						|  | else: | 
					
						
						|  | total_loss = doc_contr_loss | 
					
						
						|  | if self.document_regularization: | 
					
						
						|  | total_loss += doc_std_loss + (0.1 * doc_cov_loss) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (primary_prediction_scores,) + primary_outputs[2:] | 
					
						
						|  | return ((total_loss, masked_lm_loss, sent_contr_loss, doc_contr_loss) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return HATForSimCLRPreTrainingOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | mlm_loss=masked_lm_loss, | 
					
						
						|  | sent_contr_loss=sent_contr_loss, | 
					
						
						|  | sent_std_loss=sent_std_loss, | 
					
						
						|  | sent_cov_loss=sent_cov_loss, | 
					
						
						|  | doc_contr_loss=doc_contr_loss, | 
					
						
						|  | doc_std_loss=doc_std_loss, | 
					
						
						|  | doc_cov_loss=doc_cov_loss, | 
					
						
						|  | prediction_logits=primary_prediction_scores, | 
					
						
						|  | hidden_states=primary_outputs.hidden_states, | 
					
						
						|  | attentions=primary_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model transformer with a sequence classification/regression head on top (a linear layer on top of the | 
					
						
						|  | pooled output) e.g. for GLUE tasks. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATForSequenceClassification(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, pooling='max'): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.config = config | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  | self.pooling = pooling | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.pooler = HATPooler(config, pooling=pooling) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=SequenceClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | if self.pooling == 'first': | 
					
						
						|  | pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) | 
					
						
						|  | elif self.pooling == 'last': | 
					
						
						|  | pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) | 
					
						
						|  | else: | 
					
						
						|  | pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = self.dropout(pooled_output) | 
					
						
						|  | logits = self.classifier(pooled_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATModelForSequentialSentenceClassification(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | self.sentencizer = HATSentencizer(config) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=SequenceClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | sentence_outputs = self.sentencizer(sequence_output) | 
					
						
						|  | sentence_outputs = self.dropout(sentence_outputs) | 
					
						
						|  | logits = self.classifier(sentence_outputs) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(logits.view(-1, 1).squeeze(), labels.view(-1).squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(logits.view(-1, 1), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | mask = labels[:, :, 0] != -1 | 
					
						
						|  | loss = loss_fct(logits[mask], labels[mask]) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SentenceClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | sentence_attentions=outputs.sentence_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a | 
					
						
						|  | softmax) e.g. for RocStories/SWAG tasks. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATForMultipleChoice(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, pooling='last'): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.pooling = pooling | 
					
						
						|  | self.max_sentence_length = config.max_sentence_length | 
					
						
						|  | self.hi_transformer = HATModel(config) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.pooler = HATPooler(config, pooling=pooling) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=MultipleChoiceModelOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | 
					
						
						|  | num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | 
					
						
						|  | `input_ids` above) | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | 
					
						
						|  | flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | 
					
						
						|  | flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | 
					
						
						|  | flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | 
					
						
						|  | flat_inputs_embeds = ( | 
					
						
						|  | inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | 
					
						
						|  | if inputs_embeds is not None | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | flat_input_ids, | 
					
						
						|  | position_ids=flat_position_ids, | 
					
						
						|  | token_type_ids=flat_token_type_ids, | 
					
						
						|  | attention_mask=flat_attention_mask, | 
					
						
						|  | inputs_embeds=flat_inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | if self.pooling == 'first': | 
					
						
						|  | pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) | 
					
						
						|  | elif self.pooling == 'last': | 
					
						
						|  | pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) | 
					
						
						|  | else: | 
					
						
						|  | pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = self.dropout(pooled_output) | 
					
						
						|  | logits = self.classifier(pooled_output) | 
					
						
						|  | reshaped_logits = logits.view(-1, num_choices) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(reshaped_logits, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (reshaped_logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MultipleChoiceModelOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=reshaped_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | 
					
						
						|  | Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATForTokenClassification(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"pooler"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config, add_pooling_layer=False) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=TokenClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | sequence_output = self.dropout(sequence_output) | 
					
						
						|  | logits = self.classifier(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | HAT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear | 
					
						
						|  | layers on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
						
						|  | """, | 
					
						
						|  | HAT_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class HATForQuestionAnswering(HATPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"pooler"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.hi_transformer = HATModel(config, add_pooling_layer=False) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | processor_class=_TOKENIZER_FOR_DOC, | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=QuestionAnsweringModelOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | start_positions=None, | 
					
						
						|  | end_positions=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hi_transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + outputs[2:] | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return QuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_position_ids_from_input_ids(input_ids, padding_idx, position_ids): | 
					
						
						|  | """ | 
					
						
						|  | Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | 
					
						
						|  | are ignored. This is modified from fairseq's `utils.make_positions`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | x: torch.Tensor x: | 
					
						
						|  |  | 
					
						
						|  | Returns: torch.Tensor | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | mask = input_ids.ne(padding_idx).int() | 
					
						
						|  | return position_ids[:, :input_ids.size(1)].repeat(input_ids.size(0), 1) * mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def normalized_output_std_loss(x): | 
					
						
						|  | return torch.std(x / torch.nn.functional.normalize(x, dim=1), dim=0).mean() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vic_reg(x: torch.Tensor, y: torch.Tensor): | 
					
						
						|  | std_x = torch.sqrt(x.var(dim=0) + 0.0001) | 
					
						
						|  | std_y = torch.sqrt(y.var(dim=0) + 0.0001) | 
					
						
						|  | std_loss = torch.mean(torch.relu(1 - std_x)) / 2 + torch.mean(torch.relu(1 - std_y)) / 2 | 
					
						
						|  |  | 
					
						
						|  | cov_x = (x.T @ x) / (x.shape[0] - 1) | 
					
						
						|  | cov_y = (y.T @ y) / (y.shape[0] - 1) | 
					
						
						|  | cov_loss = off_diagonal(cov_x).pow_(2).sum().div(x.shape[-1]) + \ | 
					
						
						|  | off_diagonal(cov_y).pow_(2).sum().div(y.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | return std_loss, cov_loss | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def off_diagonal(x): | 
					
						
						|  | n, m = x.shape | 
					
						
						|  | assert n == m | 
					
						
						|  | return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |