--- license: cc-by-nc-sa-4.0 pipeline_tag: fill-mask language: en tags: - long_documents datasets: - c4 model-index: - name: kiddothe2b/longformer-base-4096 results: [] --- # Longformer / longformer-base-4096 ## Model description [Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/xxx). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096. Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=longformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification or question answering. ## How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-base-4096', trust_remote_code=True) mlm_model("Hello I'm a model.") ``` You can also fine-tun it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification(model='kiddothe2b/longformer-base-4096', trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint and has been continued pre-trained for additional 50k steps in long sequences (> 1024 subwords) of [C4](https://huggingface.co/datasets/c4) (Raffel et al., 2020). ### Training hyperparameters TThe following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7067 | 0.2 | 10000 | 1.5923 | 0.6714 | | 1.6532 | 0.4 | 20000 | 1.5494 | 0.6784 | | 1.622 | 0.6 | 30000 | 1.5208 | 0.6830 | | 1.588 | 0.8 | 40000 | 1.4880 | 0.6876 | | 1.5682 | 1.0 | 50000 | 1.4680 | 0.6908 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use this Longformer model in your research, please cite [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/xxx), alongside [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/xxx}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } @article{Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={Iz Beltagy and Matthew E. Peters and Arman Cohan}, journal={arXiv:2004.05150}, year={2020}, } ```