--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10501 - loss:CosineSimilarityLoss base_model: klue/roberta-base widget: - source_sentence: 일정이 더 많은 날은 오늘입니까 내일입니까? sentences: - 내일 일곱시에 맞춰둔 알람 벨소리가 뭐야? - 슬플 때 참지 말고 빗속을 달려보도록. - 티비 켤때 음성명령은 어떻게 해? - source_sentence: 호스트의 초코릿 선물에 저희아기들이 행복했답니다. sentences: - 신속하고 정확한 의사소통도 장점입니다. - 역사에 기록된 태풍 중 가장 큰 규모의 태풍은 무엇일까? - 그리고 일단 호스트분들이 친절했습니다. - source_sentence: 역시나 주방을 이용할 수 있다는건 정말 큰 장점인 것 같아요. sentences: - 텝스 스터디 모임을 매주에 몇 번씩 하나? - 저는 부엌을 사용할 수 있다는 것이 큰 장점이라고 생각해요. - 저는 이 이후로는 에어비앤비안쓸라고요. - source_sentence: 하지만 사소하게 아쉬웠던 점은 이불이 담요에요. sentences: - 하지만 조금 아쉬운 점은 이불이 담요라는 것입니다. - 진정한 에어비앤비를 느낄 수 있었습니다. - 위치, 청결도, 가격, 호스트 모두 좋습니다. - source_sentence: 이 숙소에서 가장 좋았던 점은 위치였습니다. sentences: - 이 숙소의 가장 좋은 점은 그것의 위치였습니다. - 생산업체들이 생산 물량을 늘릴 수 있도록 원재료 추가 확보 등 최대한 지원하기 바랍니다. - 다른 리뷰들과 마찬가지로, 부엌에는 여러분이 필요한 모든 것이 있고 화장실은 깨끗해요! pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine co2_eq_emissions: emissions: 5.887689224694198 energy_consumed: 0.013454438564481419 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: AMD Ryzen 7 7800X3D 8-Core Processor ram_total_size: 30.908397674560547 hours_used: 0.05 hardware_used: 1 x NVIDIA GeForce RTX 4080 model-index: - name: SentenceTransformer based on klue/roberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.34770709642503844 name: Pearson Cosine - type: spearman_cosine value: 0.35560473197486514 name: Spearman Cosine - type: pearson_cosine value: 0.9623505245361443 name: Pearson Cosine - type: spearman_cosine value: 0.9225407729630292 name: Spearman Cosine --- # SentenceTransformer based on klue/roberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '이 숙소에서 가장 좋았던 점은 위치였습니다.', '이 숙소의 가장 좋은 점은 그것의 위치였습니다.', '생산업체들이 생산 물량을 늘릴 수 있도록 원재료 추가 확보 등 최대한 지원하기 바랍니다.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.3477 | | **spearman_cosine** | **0.3556** | #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9624 | | **spearman_cosine** | **0.9225** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,501 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------|:-------------------------------------------|:--------------------------------| | 가이드북이 이메일로 오는 만큼 관리가 철저한 걸 느낄 수 있었습니다! | 심지어 넷플릭스도 무료로 볼 수 있었습니다! | 0.0 | | 숙소가 정말 깨끗하고 온수도 잘나옵니다. | 집이 정말 깔끔하고 온수도 잘 나옵니다. | 0.8400000000000001 | | 완전 1분 거리에 시부야에서 정말 맛있는 맛집이 많습니다. | 시부야에는 1분 거리에 맛있는 음식점이 너무 많아요. | 0.74 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | spearman_cosine | |:------:|:----:|:-------------:|:---------------:| | -1 | -1 | - | 0.3556 | | 0.7610 | 500 | 0.0282 | - | | 1.0 | 657 | - | 0.9132 | | 1.5221 | 1000 | 0.0079 | 0.9169 | | 2.0 | 1314 | - | 0.9194 | | 2.2831 | 1500 | 0.005 | - | | 3.0 | 1971 | - | 0.9212 | | 3.0441 | 2000 | 0.0034 | 0.9215 | | 3.8052 | 2500 | 0.0026 | - | | 4.0 | 2628 | - | 0.9225 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.013 kWh - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.05 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 4080 - **CPU Model**: AMD Ryzen 7 7800X3D 8-Core Processor - **RAM Size**: 30.91 GB ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```