kingabzpro commited on
Commit
c89ef01
·
verified ·
1 Parent(s): 369eeb9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -15
README.md CHANGED
@@ -3,11 +3,18 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: openai/whisper-large-v3
5
  tags:
6
- - generated_from_trainer
 
 
 
 
7
  datasets:
8
- - common_voice_17_0
9
  metrics:
10
  - wer
 
 
 
11
  model-index:
12
  - name: whisper-large-v3-urdu
13
  results:
@@ -15,21 +22,33 @@ model-index:
15
  type: automatic-speech-recognition
16
  name: Automatic Speech Recognition
17
  dataset:
18
- name: common_voice_17_0
19
- type: common_voice_17_0
20
  config: ur
21
- split: test[:600]
22
  args: ur
23
  metrics:
24
  - type: wer
25
- value: 21.47124719940254
26
- name: Wer
 
 
 
 
 
 
 
 
 
 
 
 
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
  should probably proofread and complete it, then remove this comment. -->
31
 
32
- # whisper-large-v3-urdu
33
 
34
  This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_17_0 dataset.
35
  It achieves the following results on the evaluation set:
@@ -37,19 +56,28 @@ It achieves the following results on the evaluation set:
37
  - Wer: 21.4712
38
  - Cer: 7.1975
39
 
40
- ## Model description
41
 
42
- More information needed
43
 
44
- ## Intended uses & limitations
 
45
 
46
- More information needed
 
 
 
47
 
48
- ## Training and evaluation data
 
49
 
50
- More information needed
 
 
 
 
 
 
51
 
52
- ## Training procedure
53
 
54
  ### Training hyperparameters
55
 
@@ -82,3 +110,19 @@ The following hyperparameters were used during training:
82
  - Pytorch 2.7.1+cu126
83
  - Datasets 3.4.1
84
  - Tokenizers 0.21.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  license: apache-2.0
4
  base_model: openai/whisper-large-v3
5
  tags:
6
+ - automatic-speech-recognition
7
+ - whisper
8
+ - urdu
9
+ - mozilla-foundation/common_voice_17_0
10
+ - hf-asr-leaderboard
11
  datasets:
12
+ - mozilla-foundation/common_voice_17_0
13
  metrics:
14
  - wer
15
+ - cer
16
+ - bleu
17
+ - chrf
18
  model-index:
19
  - name: whisper-large-v3-urdu
20
  results:
 
22
  type: automatic-speech-recognition
23
  name: Automatic Speech Recognition
24
  dataset:
25
+ name: Common Voice 17.0 (Urdu)
26
+ type: mozilla-foundation/common_voice_17_0
27
  config: ur
28
+ split: test
29
  args: ur
30
  metrics:
31
  - type: wer
32
+ value: 26.234
33
+ name: WER
34
+ - type: cer
35
+ value: 8.795
36
+ name: CER
37
+ - type: bleu
38
+ value: 58.032
39
+ name: BLEU
40
+ - type: chrf
41
+ value: 81.636
42
+ name: ChrF
43
+ language:
44
+ - ur
45
+ pipeline_tag: automatic-speech-recognition
46
  ---
47
 
48
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
49
  should probably proofread and complete it, then remove this comment. -->
50
 
51
+ # Whisper large V3 Urdu ASR Model 🥇
52
 
53
  This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_17_0 dataset.
54
  It achieves the following results on the evaluation set:
 
56
  - Wer: 21.4712
57
  - Cer: 7.1975
58
 
 
59
 
60
+ ## Quick Usage
61
 
62
+ ```python
63
+ from transformers import pipeline
64
 
65
+ transcriber = pipeline(
66
+ "automatic-speech-recognition",
67
+ model="kingabzpro/whisper-large-v3-turbo-urdu"
68
+ )
69
 
70
+ transcriber.model.generation_config.forced_decoder_ids = None
71
+ transcriber.model.generation_config.language = "ur"
72
 
73
+ transcription = transcriber("audio2.mp3")
74
+ print(transcription)
75
+ ```
76
+
77
+ ```sh
78
+ {'text': 'دیکھیے پانی کب تک بہتا اور مچھلی کب تک تیرتی ہے'}
79
+ ```
80
 
 
81
 
82
  ### Training hyperparameters
83
 
 
110
  - Pytorch 2.7.1+cu126
111
  - Datasets 3.4.1
112
  - Tokenizers 0.21.2
113
+
114
+ ---
115
+
116
+ ## Evaluation
117
+
118
+ Urdu ASR Evaluation on Common Voice 17.0 (Test Split).
119
+
120
+ | Metric | Value | Description |
121
+ |--------|----------|------------------------------------|
122
+ | **WER** | 26.234% | Word Error Rate (lower is better) |
123
+ | **CER** | 8.795% | Character Error Rate |
124
+ | **BLEU** | 58.032% | BLEU Score (higher is better) |
125
+ | **ChrF** | 81.636 | Character n-gram F-score |
126
+
127
+ >👉 Review the testing script: [Testing Whisper Large V3 Urdu](https://www.kaggle.com/code/kingabzpro/testing-urdu-asr-using-unsloth)
128
+