--- base_model: distilbert-base-uncased datasets: - arrow license: apache-2.0 tags: - generated_from_trainer - sentiment-classification - LLM model-index: - name: cls_distilbert_model results: [] --- # cls_distilbert_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the arrow dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4205 - eval_accuracy: 0.8218 - eval_f1: 0.8203 - eval_precision: 0.8326 - eval_recall: 0.8218 - eval_runtime: 1.4638 - eval_samples_per_second: 728.218 - eval_steps_per_second: 45.77 - epoch: 1.0 - step: 534 ## Model description Model is used to classify the sentiment POSITIVE or NEGATIVE for given sample inout textx ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.0