Upload model
Browse files- README.md +199 -0
- config.json +1 -2
- modeling.py +17 -10
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "models/qa_multi_4_retromae_diclp0.05pp0.3_min1",
|
3 |
"architectures": [
|
4 |
"KPRModelForBert"
|
5 |
],
|
@@ -30,7 +29,7 @@
|
|
30 |
"similarity_function": "dot",
|
31 |
"similarity_temperature": 1.0,
|
32 |
"torch_dtype": "float32",
|
33 |
-
"transformers_version": "4.
|
34 |
"type_vocab_size": 2,
|
35 |
"use_cache": true,
|
36 |
"use_entity_position_embeddings": true,
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"KPRModelForBert"
|
4 |
],
|
|
|
29 |
"similarity_function": "dot",
|
30 |
"similarity_temperature": 1.0,
|
31 |
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.55.2",
|
33 |
"type_vocab_size": 2,
|
34 |
"use_cache": true,
|
35 |
"use_entity_position_embeddings": true,
|
modeling.py
CHANGED
@@ -155,10 +155,12 @@ class EntityFusionLayer(nn.Module):
|
|
155 |
|
156 |
|
157 |
class KPRMixin:
|
158 |
-
def _forward(self, **inputs: Tensor | dict[str, Tensor]) -> Tensor:
|
|
|
|
|
159 |
if self.training:
|
160 |
-
query_embeddings = self.
|
161 |
-
passage_embeddings = self.
|
162 |
|
163 |
query_embeddings = self._dist_gather_tensor(query_embeddings)
|
164 |
passage_embeddings = self._dist_gather_tensor(passage_embeddings)
|
@@ -171,12 +173,19 @@ class KPRMixin:
|
|
171 |
ce_target = ce_target * (passage_embeddings.size(0) // query_embeddings.size(0))
|
172 |
loss = torch.nn.CrossEntropyLoss(reduction="mean")(scores, ce_target)
|
173 |
|
174 |
-
|
|
|
|
|
|
|
175 |
|
176 |
else:
|
177 |
-
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
def
|
180 |
entity_ids = inputs.pop("entity_ids", None)
|
181 |
entity_position_ids = inputs.pop("entity_position_ids", None)
|
182 |
entity_embeds = inputs.pop("entity_embeds", None)
|
@@ -191,6 +200,8 @@ class KPRMixin:
|
|
191 |
entity_position_ids=entity_position_ids,
|
192 |
cls_embeddings=output_embeddings,
|
193 |
)
|
|
|
|
|
194 |
|
195 |
return output_embeddings
|
196 |
|
@@ -205,10 +216,6 @@ class KPRMixin:
|
|
205 |
return gathered_tensor
|
206 |
|
207 |
def _compute_similarity(self, query_embeddings: Tensor, passage_embeddings: Tensor) -> Tensor:
|
208 |
-
if self.config.similarity_function == "cosine":
|
209 |
-
query_embeddings = F.normalize(query_embeddings, p=2, dim=-1)
|
210 |
-
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=-1)
|
211 |
-
|
212 |
return torch.matmul(query_embeddings, passage_embeddings.transpose(-2, -1))
|
213 |
|
214 |
|
|
|
155 |
|
156 |
|
157 |
class KPRMixin:
|
158 |
+
def _forward(self, **inputs: Tensor | dict[str, Tensor]) -> tuple[Tensor] | tuple[Tensor, Tensor] | ModelOutput:
|
159 |
+
return_dict = inputs.pop("return_dict", True)
|
160 |
+
|
161 |
if self.training:
|
162 |
+
query_embeddings = self.encode(inputs["queries"])
|
163 |
+
passage_embeddings = self.encode(inputs["passages"])
|
164 |
|
165 |
query_embeddings = self._dist_gather_tensor(query_embeddings)
|
166 |
passage_embeddings = self._dist_gather_tensor(passage_embeddings)
|
|
|
173 |
ce_target = ce_target * (passage_embeddings.size(0) // query_embeddings.size(0))
|
174 |
loss = torch.nn.CrossEntropyLoss(reduction="mean")(scores, ce_target)
|
175 |
|
176 |
+
if return_dict:
|
177 |
+
return ModelOutput(loss=loss, scores=scores)
|
178 |
+
else:
|
179 |
+
return (loss, scores)
|
180 |
|
181 |
else:
|
182 |
+
sentence_embeddings = self.encode(inputs).unsqueeze(1)
|
183 |
+
if return_dict:
|
184 |
+
return ModelOutput(sentence_embeddings=sentence_embeddings)
|
185 |
+
else:
|
186 |
+
return (sentence_embeddings,)
|
187 |
|
188 |
+
def encode(self, inputs: dict[str, Tensor]) -> Tensor:
|
189 |
entity_ids = inputs.pop("entity_ids", None)
|
190 |
entity_position_ids = inputs.pop("entity_position_ids", None)
|
191 |
entity_embeds = inputs.pop("entity_embeds", None)
|
|
|
200 |
entity_position_ids=entity_position_ids,
|
201 |
cls_embeddings=output_embeddings,
|
202 |
)
|
203 |
+
if self.config.similarity_function == "cosine":
|
204 |
+
output_embeddings = F.normalize(output_embeddings, p=2, dim=-1)
|
205 |
|
206 |
return output_embeddings
|
207 |
|
|
|
216 |
return gathered_tensor
|
217 |
|
218 |
def _compute_similarity(self, query_embeddings: Tensor, passage_embeddings: Tensor) -> Tensor:
|
|
|
|
|
|
|
|
|
219 |
return torch.matmul(query_embeddings, passage_embeddings.transpose(-2, -1))
|
220 |
|
221 |
|