Duplicate from ibm-granite/granite-3.1-1b-a400m-base
Browse filesCo-authored-by: Rameswar Panda <[email protected]>
- .gitattributes +35 -0
- README.md +323 -0
- config.json +35 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +225 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +187 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
inference: false
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- language
|
8 |
+
- granite-3.1
|
9 |
+
---
|
10 |
+
|
11 |
+
# Granite-3.1-1B-A400M-Base
|
12 |
+
|
13 |
+
**Model Summary:**
|
14 |
+
Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K. This long-context pre-training stage was performed using approximately 500B tokens.
|
15 |
+
|
16 |
+
- **Developers:** Granite Team, IBM
|
17 |
+
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
|
18 |
+
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
|
19 |
+
- **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d)
|
20 |
+
- **Release Date**: December 18th, 2024
|
21 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
22 |
+
|
23 |
+
**Supported Languages:**
|
24 |
+
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.
|
25 |
+
|
26 |
+
**Intended Use:**
|
27 |
+
Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.
|
28 |
+
|
29 |
+
**Generation:**
|
30 |
+
This is a simple example of how to use Granite-3.1-1B-A400M-Base model.
|
31 |
+
|
32 |
+
Install the following libraries:
|
33 |
+
|
34 |
+
```shell
|
35 |
+
pip install torch torchvision torchaudio
|
36 |
+
pip install accelerate
|
37 |
+
pip install transformers
|
38 |
+
```
|
39 |
+
Then, copy the code snippet below to run the example.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
device = "auto"
|
44 |
+
model_path = "ibm-granite/granite-3.1-1b-a400m-base"
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
46 |
+
# drop device_map if running on CPU
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
48 |
+
model.eval()
|
49 |
+
# change input text as desired
|
50 |
+
input_text = "Where is the Thomas J. Watson Research Center located?"
|
51 |
+
# tokenize the text
|
52 |
+
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
|
53 |
+
# generate output tokens
|
54 |
+
output = model.generate(**input_tokens,
|
55 |
+
max_length=4000)
|
56 |
+
# decode output tokens into text
|
57 |
+
output = tokenizer.batch_decode(output)
|
58 |
+
# print output
|
59 |
+
print(output)
|
60 |
+
```
|
61 |
+
**Evaluation Results:**
|
62 |
+
<table>
|
63 |
+
<caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
|
64 |
+
<thead>
|
65 |
+
<tr>
|
66 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
67 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
|
68 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
|
69 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
|
70 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
|
71 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
|
72 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
|
73 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
74 |
+
</tr></thead>
|
75 |
+
<tbody>
|
76 |
+
<tr>
|
77 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
78 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
|
79 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
|
80 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
|
81 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
|
82 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
|
83 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
|
84 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
|
85 |
+
</tr>
|
86 |
+
<tr>
|
87 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
88 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
|
89 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
|
90 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
|
91 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
|
92 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
|
93 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
|
94 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
98 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
|
99 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
|
100 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
|
101 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
|
102 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
|
103 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
|
104 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
|
105 |
+
</tr>
|
106 |
+
<tr>
|
107 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
108 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
|
109 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
|
110 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
|
111 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
|
112 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
|
113 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
|
114 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
|
115 |
+
</tr>
|
116 |
+
</tbody></table>
|
117 |
+
|
118 |
+
<table>
|
119 |
+
<caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
|
120 |
+
<thead>
|
121 |
+
<tr>
|
122 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
123 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
|
124 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
|
125 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
|
126 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
|
127 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
|
128 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
|
129 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
130 |
+
</tr></thead>
|
131 |
+
<tbody>
|
132 |
+
<tr>
|
133 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
134 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
|
135 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
|
136 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
|
137 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
|
138 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
|
139 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
|
140 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
144 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
|
145 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
|
146 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
|
147 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
148 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
|
149 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
|
150 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
|
151 |
+
</tr>
|
152 |
+
<tr>
|
153 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
154 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
|
155 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
|
156 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
|
157 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
158 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
|
159 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
|
160 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
164 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
|
165 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
|
166 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
|
167 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
|
168 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
|
169 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
|
170 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
|
171 |
+
</tr>
|
172 |
+
</tbody></table>
|
173 |
+
|
174 |
+
**Model Architecture:**
|
175 |
+
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
|
176 |
+
|
177 |
+
<table>
|
178 |
+
<thead>
|
179 |
+
<tr>
|
180 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
|
181 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
|
182 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
|
183 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
|
184 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
|
185 |
+
</tr></thead>
|
186 |
+
<tbody>
|
187 |
+
<tr>
|
188 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
|
189 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
|
190 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
|
191 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
|
192 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
|
193 |
+
</tr>
|
194 |
+
<tr>
|
195 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
|
196 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
197 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
198 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
|
199 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
|
203 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
204 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
|
205 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
|
206 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
207 |
+
</tr>
|
208 |
+
<tr>
|
209 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
|
210 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
211 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
212 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
|
213 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
|
214 |
+
</tr>
|
215 |
+
<tr>
|
216 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
|
217 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
218 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
219 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
220 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
221 |
+
</tr>
|
222 |
+
<tr>
|
223 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
|
224 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
|
225 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
|
226 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
|
227 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
|
228 |
+
</tr>
|
229 |
+
<tr>
|
230 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
|
231 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
232 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
233 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
|
234 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
235 |
+
</tr>
|
236 |
+
<tr>
|
237 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
|
238 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
239 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
240 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
|
241 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
242 |
+
</tr>
|
243 |
+
<tr>
|
244 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
|
245 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
246 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
247 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
248 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
|
252 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
253 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
254 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
|
255 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
256 |
+
</tr>
|
257 |
+
<tr>
|
258 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
|
259 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
260 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
261 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
|
262 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
263 |
+
</tr>
|
264 |
+
<tr>
|
265 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
|
266 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
267 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
268 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
|
269 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
270 |
+
</tr>
|
271 |
+
<tr>
|
272 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
|
273 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
274 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
275 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
|
276 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
|
277 |
+
</tr>
|
278 |
+
<tr>
|
279 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
|
280 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
281 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
282 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
|
283 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
|
287 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
288 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
289 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
|
290 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
|
291 |
+
</tr>
|
292 |
+
</tbody></table>
|
293 |
+
|
294 |
+
**Training Data:**
|
295 |
+
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
|
296 |
+
* Stage 1 data: The data for stage 1 is sourced from diverse domains, such as: web, code, academic sources, books, and math data.
|
297 |
+
* Stage 2 data: The data for stage 2 comprises a curated mix of high-quality data from the same domains, plus multilingual and instruction data. The goal of this second training phase is to enhance the model’s performance on specific tasks.
|
298 |
+
* Stage 3 data: The data for stage 3 consists of original stage-2 pretraining data with additional synthetic long-context data in form of QA/summary pairs where the answer contains a recitation of the related paragraph before the answer.
|
299 |
+
|
300 |
+
A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
|
301 |
+
|
302 |
+
**Infrastructure:**
|
303 |
+
We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
|
304 |
+
|
305 |
+
**Ethical Considerations and Limitations:**
|
306 |
+
The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-3.1-1B-A400M-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-3.1-1B-A400M-Base model with ethical intentions and in a responsible way.
|
307 |
+
|
308 |
+
**Resources**
|
309 |
+
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
|
310 |
+
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
|
311 |
+
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
312 |
+
|
313 |
+
<!-- ## Citation
|
314 |
+
```
|
315 |
+
@misc{granite-models,
|
316 |
+
author = {author 1, author2, ...},
|
317 |
+
title = {},
|
318 |
+
journal = {},
|
319 |
+
volume = {},
|
320 |
+
year = {2024},
|
321 |
+
url = {https://arxiv.org/abs/0000.00000},
|
322 |
+
}
|
323 |
+
``` -->
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GraniteMoeForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"attention_multiplier": 0.015625,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"embedding_multiplier": 12.0,
|
10 |
+
"eos_token_id": 0,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 512,
|
15 |
+
"logits_scaling": 6.0,
|
16 |
+
"max_position_embeddings": 131072,
|
17 |
+
"model_type": "granitemoe",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_experts_per_tok": 8,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"num_local_experts": 32,
|
23 |
+
"output_router_logits": false,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"residual_multiplier": 0.22,
|
26 |
+
"rms_norm_eps": 1e-06,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 1500000.0,
|
29 |
+
"router_aux_loss_coef": 0.001,
|
30 |
+
"tie_word_embeddings": true,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.46.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 49152
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.46.0"
|
7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6933b6375074dc6cc4c0b98c9e126cd5fc899ef0cd80db0a932a232c6393c9cd
|
3 |
+
size 1993497352
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:271870f88e36f28ca87e86e11fa971b0b3e268fb9ac4495d42c66fdd1bc9d060
|
3 |
+
size 675779512
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 2669250560
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.1.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.10.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.11.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.12.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.13.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.14.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.15.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.16.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.17.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"model.layers.17.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.18.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"model.layers.18.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"model.layers.18.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
101 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
102 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
106 |
+
"model.layers.19.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
107 |
+
"model.layers.19.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"model.layers.19.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"model.layers.2.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.20.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
125 |
+
"model.layers.20.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"model.layers.21.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"model.layers.21.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.22.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.23.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.3.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.3.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.3.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.4.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.4.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.4.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.5.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.5.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.5.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.6.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.6.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.6.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.7.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.7.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.7.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.8.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.8.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.8.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.9.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.9.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.9.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
224 |
+
}
|
225 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<fim_prefix>",
|
5 |
+
"<fim_middle>",
|
6 |
+
"<fim_suffix>",
|
7 |
+
"<fim_pad>",
|
8 |
+
"<filename>",
|
9 |
+
"<gh_stars>",
|
10 |
+
"<issue_start>",
|
11 |
+
"<issue_comment>",
|
12 |
+
"<issue_closed>",
|
13 |
+
"<jupyter_start>",
|
14 |
+
"<jupyter_text>",
|
15 |
+
"<jupyter_code>",
|
16 |
+
"<jupyter_output>",
|
17 |
+
"<empty_output>",
|
18 |
+
"<commit_before>",
|
19 |
+
"<commit_msg>",
|
20 |
+
"<commit_after>",
|
21 |
+
"<reponame>"
|
22 |
+
],
|
23 |
+
"bos_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"eos_token": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"pad_token": {
|
38 |
+
"content": "<|endoftext|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<|endoftext|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<fim_prefix>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<fim_middle>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<fim_suffix>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<fim_pad>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<filename>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<gh_stars>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<issue_start>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_comment>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_closed>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<jupyter_start>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_text>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_code>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_output>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<empty_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<commit_before>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<commit_msg>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"17": {
|
141 |
+
"content": "<commit_after>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"18": {
|
149 |
+
"content": "<reponame>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"additional_special_tokens": [
|
158 |
+
"<|endoftext|>",
|
159 |
+
"<fim_prefix>",
|
160 |
+
"<fim_middle>",
|
161 |
+
"<fim_suffix>",
|
162 |
+
"<fim_pad>",
|
163 |
+
"<filename>",
|
164 |
+
"<gh_stars>",
|
165 |
+
"<issue_start>",
|
166 |
+
"<issue_comment>",
|
167 |
+
"<issue_closed>",
|
168 |
+
"<jupyter_start>",
|
169 |
+
"<jupyter_text>",
|
170 |
+
"<jupyter_code>",
|
171 |
+
"<jupyter_output>",
|
172 |
+
"<empty_output>",
|
173 |
+
"<commit_before>",
|
174 |
+
"<commit_msg>",
|
175 |
+
"<commit_after>",
|
176 |
+
"<reponame>"
|
177 |
+
],
|
178 |
+
"bos_token": "<|endoftext|>",
|
179 |
+
"clean_up_tokenization_spaces": true,
|
180 |
+
"eos_token": "<|endoftext|>",
|
181 |
+
"model_max_length": 9223372036854775807,
|
182 |
+
"pad_token": "<|endoftext|>",
|
183 |
+
"padding_side": "left",
|
184 |
+
"tokenizer_class": "GPT2Tokenizer",
|
185 |
+
"unk_token": "<|endoftext|>",
|
186 |
+
"vocab_size": 49152
|
187 |
+
}
|