Duplicate from ibm-granite/granite-3.1-3b-a800m-instruct
Browse filesCo-authored-by: Rameswar Panda <[email protected]>
- .gitattributes +35 -0
- README.md +335 -0
- added_tokens.json +5 -0
- config.json +35 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +297 -0
- special_tokens_map.json +35 -0
- tokenizer.json +0 -0
- tokenizer_config.json +199 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
inference: false
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- language
|
8 |
+
- granite-3.1
|
9 |
+
base_model:
|
10 |
+
- ibm-granite/granite-3.1-3b-a800m-base
|
11 |
+
---
|
12 |
+
|
13 |
+
# Granite-3.1-3B-A800M-Instruct
|
14 |
+
|
15 |
+
**Model Summary:**
|
16 |
+
Granite-3.1-3B-A800M-Instruct is a 3B parameter long-context instruct model finetuned from Granite-3.1-3B-A800M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
|
17 |
+
|
18 |
+
- **Developers:** Granite Team, IBM
|
19 |
+
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
|
20 |
+
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
|
21 |
+
- **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d)
|
22 |
+
- **Release Date**: December 18th, 2024
|
23 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
24 |
+
|
25 |
+
**Supported Languages:**
|
26 |
+
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.
|
27 |
+
|
28 |
+
**Intended Use:**
|
29 |
+
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
|
30 |
+
|
31 |
+
*Capabilities*
|
32 |
+
* Summarization
|
33 |
+
* Text classification
|
34 |
+
* Text extraction
|
35 |
+
* Question-answering
|
36 |
+
* Retrieval Augmented Generation (RAG)
|
37 |
+
* Code related tasks
|
38 |
+
* Function-calling tasks
|
39 |
+
* Multilingual dialog use cases
|
40 |
+
* Long-context tasks including long document/meeting summarization, long document QA, etc.
|
41 |
+
|
42 |
+
**Generation:**
|
43 |
+
This is a simple example of how to use Granite-3.1-3B-A800M-Instruct model.
|
44 |
+
|
45 |
+
Install the following libraries:
|
46 |
+
|
47 |
+
```shell
|
48 |
+
pip install torch torchvision torchaudio
|
49 |
+
pip install accelerate
|
50 |
+
pip install transformers
|
51 |
+
```
|
52 |
+
Then, copy the snippet from the section that is relevant for your use case.
|
53 |
+
|
54 |
+
```python
|
55 |
+
import torch
|
56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
57 |
+
|
58 |
+
device = "auto"
|
59 |
+
model_path = "ibm-granite/granite-3.1-3b-a800m-Instruct"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
61 |
+
# drop device_map if running on CPU
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
63 |
+
model.eval()
|
64 |
+
# change input text as desired
|
65 |
+
chat = [
|
66 |
+
{ "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
|
67 |
+
]
|
68 |
+
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
69 |
+
# tokenize the text
|
70 |
+
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
71 |
+
# generate output tokens
|
72 |
+
output = model.generate(**input_tokens,
|
73 |
+
max_new_tokens=100)
|
74 |
+
# decode output tokens into text
|
75 |
+
output = tokenizer.batch_decode(output)
|
76 |
+
# print output
|
77 |
+
print(output)
|
78 |
+
```
|
79 |
+
**Evaluation Results:**
|
80 |
+
<table>
|
81 |
+
<caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
|
82 |
+
<thead>
|
83 |
+
<tr>
|
84 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
85 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
|
86 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
|
87 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
|
88 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
|
89 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
|
90 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
|
91 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
92 |
+
</tr></thead>
|
93 |
+
<tbody>
|
94 |
+
<tr>
|
95 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Instruct</td>
|
96 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">62.62</td>
|
97 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">84.48</td>
|
98 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">65.34</td>
|
99 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">66.23</td>
|
100 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">75.37</td>
|
101 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">73.84</td>
|
102 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">71.31</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td>
|
106 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">54.61</td>
|
107 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">75.14</td>
|
108 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">55.31</td>
|
109 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">59.42</td>
|
110 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.48</td>
|
111 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.76</td>
|
112 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">60.79</td>
|
113 |
+
</tr>
|
114 |
+
<tr>
|
115 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-3B-A800M-Instruct</td>
|
116 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">50.42</td>
|
117 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">73.01</td>
|
118 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">52.19</td>
|
119 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">49.71</td>
|
120 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">64.87</td>
|
121 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">48.97</td>
|
122 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">56.53</td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Instruct</td>
|
126 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">42.66</td>
|
127 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">65.97</td>
|
128 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">26.13</td>
|
129 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.77</td>
|
130 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">62.35</td>
|
131 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">33.88</td>
|
132 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.29</td>
|
133 |
+
</tr>
|
134 |
+
</tbody></table>
|
135 |
+
|
136 |
+
<table>
|
137 |
+
<caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
|
138 |
+
<thead>
|
139 |
+
<tr>
|
140 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
141 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
|
142 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
|
143 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
|
144 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
|
145 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
|
146 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
|
147 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
148 |
+
</tr></thead>
|
149 |
+
<tbody>
|
150 |
+
<tr>
|
151 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Instruct</td>
|
152 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">72.08</td>
|
153 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">34.09</td>
|
154 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">21.68</td>
|
155 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.28</td>
|
156 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">19.01</td>
|
157 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">28.19</td>
|
158 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">30.55</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td>
|
162 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">62.86</td>
|
163 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">21.82</td>
|
164 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.33</td>
|
165 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.26</td>
|
166 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4.87</td>
|
167 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">20.21</td>
|
168 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">21.06</td>
|
169 |
+
</tr>
|
170 |
+
<tr>
|
171 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-3B-A800M-Instruct</td>
|
172 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">55.16</td>
|
173 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">16.69</td>
|
174 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">10.35</td>
|
175 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">5.15</td>
|
176 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.51</td>
|
177 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">12.75</td>
|
178 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">17.1</td>
|
179 |
+
</tr>
|
180 |
+
<tr>
|
181 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Instruct</td>
|
182 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.86</td>
|
183 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">6.18</td>
|
184 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4.08</td>
|
185 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">0</td>
|
186 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">0.78</td>
|
187 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">2.41</td>
|
188 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">10.05</td>
|
189 |
+
</tr>
|
190 |
+
</tbody></table>
|
191 |
+
|
192 |
+
**Model Architecture:**
|
193 |
+
Granite-3.1-3B-A800M-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.
|
194 |
+
<table>
|
195 |
+
<thead>
|
196 |
+
<tr>
|
197 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
|
198 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
|
199 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
|
200 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
|
201 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
|
202 |
+
</tr></thead>
|
203 |
+
<tbody>
|
204 |
+
<tr>
|
205 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
|
206 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
|
207 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
|
208 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">1024</td>
|
209 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1536</td>
|
210 |
+
</tr>
|
211 |
+
<tr>
|
212 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
|
213 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
214 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
215 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
|
216 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
|
220 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
221 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
|
222 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
223 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
|
224 |
+
</tr>
|
225 |
+
<tr>
|
226 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
|
227 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
228 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
229 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">16</td>
|
230 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
|
231 |
+
</tr>
|
232 |
+
<tr>
|
233 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
|
234 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
235 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
236 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
237 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
238 |
+
</tr>
|
239 |
+
<tr>
|
240 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
|
241 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
|
242 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
|
243 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
|
244 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
|
245 |
+
</tr>
|
246 |
+
<tr>
|
247 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
|
248 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
249 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
250 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
251 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
|
252 |
+
</tr>
|
253 |
+
<tr>
|
254 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
|
255 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
256 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
257 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
258 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">40</td>
|
259 |
+
</tr>
|
260 |
+
<tr>
|
261 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
|
262 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
263 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
264 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
265 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
266 |
+
</tr>
|
267 |
+
<tr>
|
268 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
|
269 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
270 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
271 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
272 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
|
273 |
+
</tr>
|
274 |
+
<tr>
|
275 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
|
276 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
277 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
278 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
279 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
|
280 |
+
</tr>
|
281 |
+
<tr>
|
282 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
|
283 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
284 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
285 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
286 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
|
287 |
+
</tr>
|
288 |
+
<tr>
|
289 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
|
290 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
291 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
292 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">1.3B</td>
|
293 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">3.3B</td>
|
294 |
+
</tr>
|
295 |
+
<tr>
|
296 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
|
297 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
298 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
299 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">400M</td>
|
300 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">800M</td>
|
301 |
+
</tr>
|
302 |
+
<tr>
|
303 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
|
304 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
305 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
306 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
|
307 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
|
308 |
+
</tr>
|
309 |
+
</tbody></table>
|
310 |
+
|
311 |
+
**Training Data:**
|
312 |
+
Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
|
313 |
+
|
314 |
+
**Infrastructure:**
|
315 |
+
We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
|
316 |
+
|
317 |
+
**Ethical Considerations and Limitations:**
|
318 |
+
Granite 3.1 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.
|
319 |
+
|
320 |
+
**Resources**
|
321 |
+
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
|
322 |
+
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
|
323 |
+
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
324 |
+
|
325 |
+
<!-- ## Citation
|
326 |
+
```
|
327 |
+
@misc{granite-models,
|
328 |
+
author = {author 1, author2, ...},
|
329 |
+
title = {},
|
330 |
+
journal = {},
|
331 |
+
volume = {},
|
332 |
+
year = {2024},
|
333 |
+
url = {https://arxiv.org/abs/0000.00000},
|
334 |
+
}
|
335 |
+
``` -->
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_role|>": 49153,
|
3 |
+
"<|start_of_role|>": 49152,
|
4 |
+
"<|tool_call|>": 49154
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GraniteMoeForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_multiplier": 0.015625,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"embedding_multiplier": 12.0,
|
10 |
+
"eos_token_id": 0,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 1536,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 512,
|
15 |
+
"logits_scaling": 6.0,
|
16 |
+
"max_position_embeddings": 131072,
|
17 |
+
"model_type": "granitemoe",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_experts_per_tok": 8,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"num_local_experts": 40,
|
23 |
+
"output_router_logits": false,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"residual_multiplier": 0.22,
|
26 |
+
"rms_norm_eps": 1e-06,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 10000000.0,
|
29 |
+
"router_aux_loss_coef": 0.0,
|
30 |
+
"tie_word_embeddings": true,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.47.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 49155
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.47.0"
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4467e3124323e483c31ef2ab8afed70d2734bdb2bb03a5b05da4d4a529735b1
|
3 |
+
size 4998548704
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:065160c51d07aa9614aad8e5f6e43ac5fdbfa0320dec47cf0a0c0f0a0d3cc17c
|
3 |
+
size 1599073464
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6597586944
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.1.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.10.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.11.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.12.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.13.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.14.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.15.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.16.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.17.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.18.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.19.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.2.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.20.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.20.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.21.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.21.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.21.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.22.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.22.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.22.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.23.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.23.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.23.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.24.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.25.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.26.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.27.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.28.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.28.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.28.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.29.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.29.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.29.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.3.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.3.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.3.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.30.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.30.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.30.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.31.block_sparse_moe.input_linear.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.31.block_sparse_moe.output_linear.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.31.block_sparse_moe.router.layer.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.4.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.4.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.4.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.5.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.5.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.5.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.6.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.6.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.6.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.7.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.7.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.7.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.8.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.8.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.8.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.9.block_sparse_moe.input_linear.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.9.block_sparse_moe.output_linear.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.9.block_sparse_moe.router.layer.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
296 |
+
}
|
297 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|start_of_role|>",
|
4 |
+
"<|end_of_role|>",
|
5 |
+
"<|tool_call|>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<|end_of_text|>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "<|end_of_text|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<|end_of_text|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<|end_of_text|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|end_of_text|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<fim_prefix>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<fim_middle>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<fim_suffix>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<fim_pad>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<filename>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<gh_stars>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<issue_start>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<issue_comment>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<issue_closed>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<jupyter_start>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<jupyter_text>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<jupyter_code>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<jupyter_output>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<empty_output>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<commit_before>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<commit_msg>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<commit_after>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<reponame>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"49152": {
|
158 |
+
"content": "<|start_of_role|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"49153": {
|
166 |
+
"content": "<|end_of_role|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"49154": {
|
174 |
+
"content": "<|tool_call|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|start_of_role|>",
|
184 |
+
"<|end_of_role|>",
|
185 |
+
"<|tool_call|>"
|
186 |
+
],
|
187 |
+
"bos_token": "<|end_of_text|>",
|
188 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
|
189 |
+
"clean_up_tokenization_spaces": true,
|
190 |
+
"eos_token": "<|end_of_text|>",
|
191 |
+
"errors": "replace",
|
192 |
+
"extra_special_tokens": {},
|
193 |
+
"model_max_length": 9223372036854775807,
|
194 |
+
"pad_token": "<|end_of_text|>",
|
195 |
+
"padding_side": "left",
|
196 |
+
"tokenizer_class": "GPT2Tokenizer",
|
197 |
+
"unk_token": "<|end_of_text|>",
|
198 |
+
"vocab_size": 49152
|
199 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|