File size: 13,159 Bytes
4bc96c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-4B-Base
tags:
- konanllm
language:
- ko
- en
---
# Konan-LLM-OND
## **Overview**
**Konan-LLM-OND**, a large language model from Konan Technology Inc., is based on [Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base). It has been specifically optimized for the Korean language through vocabulary expansion, continual pre-training, and instruction tuning to enhance performance and efficiency.
* **Languages**: Primarily Korean, with support for English.
* **Key Features:**
* **Expanded Korean Vocabulary:** The model's vocabulary has been expanded with additional Korean tokens to improve tokenization efficiency. As a result, Konan-LLM-OND is approximately 30% more token-efficient with Korean input than Qwen3, leading to greater cost-effectiveness and processing speed.
* **Continual Pre-training**: The model underwent continual pre-training on a large-scale Korean corpus using an expanded vocabulary. This process enhanced its fundamental understanding and text generation capabilities in Korean.
* **Supervised Fine-Tuning (SFT):** The model was fine-tuned on a high-quality Korean instruction dataset to improve its ability to understand and execute a wide variety of real-world tasks.
## Benchmark Results
#### **Model Performance (๏ผ 5B)**
<table border="1" style="border-collapse: collapse; width: 100%;">
<thead>
<tr>
<th rowspan="2" style="text-align: center; padding: 8px;">Model</th>
<th rowspan="2" style="text-align: center; padding: 8px;">Model size</th>
<th colspan="3" style="text-align: center; padding: 8px;">Korean</th>
<th colspan="3" style="text-align: center; padding: 8px;">English</th>
</tr>
<tr>
<th style="text-align: center; padding: 8px;">KMMLU</th>
<th style="text-align: center; padding: 8px;">HRM8K</th>
<th style="text-align: center; padding: 8px;">Ko-IFEval</th>
<th style="text-align: center; padding: 8px;">MMLU</th>
<th style="text-align: center; padding: 8px;">GSM8K</th>
<th style="text-align: center; padding: 8px;">IFEval</th>
</tr>
</thead>
<tbody>
<tr>
<td style="padding: 8px;"><strong>Konan-LLM-OND</strong></td>
<td style="text-align: center; padding: 8px;">4.0B</td>
<td style="text-align: center; padding: 8px;"><strong>50.6<strong></td>
<td style="text-align: center; padding: 8px;"><strong>46.4<strong></td>
<td style="text-align: center; padding: 8px;">68.4</td>
<td style="text-align: center; padding: 8px;"><strong>68.8<strong></td>
<td style="text-align: center; padding: 8px;"><strong>86.8<strong></td>
<td style="text-align: center; padding: 8px;">73.3</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>EXAONE-3.5-2.4B-Instruct</strong></td>
<td style="text-align: center; padding: 8px;">2.4B</td>
<td style="text-align: center; padding: 8px;">44.2</td>
<td style="text-align: center; padding: 8px;">31.8</td>
<td style="text-align: center; padding: 8px;">60.5</td>
<td style="text-align: center; padding: 8px;">59.1</td>
<td style="text-align: center; padding: 8px;">81.5</td>
<td style="text-align: center; padding: 8px;">77.7</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>kanana-1.5-2.1b-instruct-2505</strong></td>
<td style="text-align: center; padding: 8px;">2.1B</td>
<td style="text-align: center; padding: 8px;">32.7</td>
<td style="text-align: center; padding: 8px;">27.2</td>
<td style="text-align: center; padding: 8px;">56.0</td>
<td style="text-align: center; padding: 8px;">52.9</td>
<td style="text-align: center; padding: 8px;">68.8</td>
<td style="text-align: center; padding: 8px;">64.6</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>Midm-2.0-Mini-Instruct</strong></td>
<td style="text-align: center; padding: 8px;">2.3B</td>
<td style="text-align: center; padding: 8px;">42.4</td>
<td style="text-align: center; padding: 8px;">36.2</td>
<td style="text-align: center; padding: 8px;">66.8</td>
<td style="text-align: center; padding: 8px;">57.4</td>
<td style="text-align: center; padding: 8px;">74.8</td>
<td style="text-align: center; padding: 8px;">68.3</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>Qwen3-4B(w/o reasoning)</strong></td>
<td style="text-align: center; padding: 8px;">4.0B</td>
<td style="text-align: center; padding: 8px;">0.0(*)</td>
<td style="text-align: center; padding: 8px;">37.5</td>
<td style="text-align: center; padding: 8px;">68.4</td>
<td style="text-align: center; padding: 8px;">29.4(*)</td>
<td style="text-align: center; padding: 8px;">83.9</td>
<td style="text-align: center; padding: 8px;"><strong>80.0<strong></td>
</tr>
<tr>
<td style="padding: 8px;"><strong>gemma-3-4b-it</strong></td>
<td style="text-align: center; padding: 8px;">4.3B</td>
<td style="text-align: center; padding: 8px;">38.7</td>
<td style="text-align: center; padding: 8px;">32.7</td>
<td style="text-align: center; padding: 8px;"><strong>69.2<strong></td>
<td style="text-align: center; padding: 8px;">59.1</td>
<td style="text-align: center; padding: 8px;">82.2</td>
<td style="text-align: center; padding: 8px;">78.3</td>
</tr>
</tbody>
</table>
#### **Model Performance (โฅ 7B)**
<table border="1" style="border-collapse: collapse; width: 100%;">
<thead>
<tr>
<th rowspan="2" style="text-align: center; padding: 8px;">Model</th>
<th rowspan="2" style="text-align: center; padding: 8px;">Model size</th>
<th colspan="3" style="text-align: center; padding: 8px;">Korean</th>
<th colspan="3" style="text-align: center; padding: 8px;">English</th>
</tr>
<tr>
<th style="text-align: center; padding: 8px;">KMMLU</th>
<th style="text-align: center; padding: 8px;">HRM8K</th>
<th style="text-align: center; padding: 8px;">Ko-IFEval</th>
<th style="text-align: center; padding: 8px;">MMLU</th>
<th style="text-align: center; padding: 8px;">GSM8K</th>
<th style="text-align: center; padding: 8px;">IFEval</th>
</tr>
</thead>
<tbody>
<tr>
<td style="padding: 8px;"><strong>Konan-LLM-OND</strong></td>
<td style="text-align: center; padding: 8px;">4.0B</td>
<td style="text-align: center; padding: 8px;">50.6</td>
<td style="text-align: center; padding: 8px;"><strong>46.4</strong></td>
<td style="text-align: center; padding: 8px;">68.4</td>
<td style="text-align: center; padding: 8px;">68.8</td>
<td style="text-align: center; padding: 8px;">86.8</td>
<td style="text-align: center; padding: 8px;">73.3</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>A.X-4.0-Light</strong></td>
<td style="text-align: center; padding: 8px;">7.2B</td>
<td style="text-align: center; padding: 8px;"><strong>55.3</strong></td>
<td style="text-align: center; padding: 8px;">44.6</td>
<td style="text-align: center; padding: 8px;">71.5</td>
<td style="text-align: center; padding: 8px;"><strong>70.6</strong></td>
<td style="text-align: center; padding: 8px;">87.3</td>
<td style="text-align: center; padding: 8px;">81.3</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>EXAONE-3.5-7.8B-Instruct</strong></td>
<td style="text-align: center; padding: 8px;">7.8B</td>
<td style="text-align: center; padding: 8px;">48.0</td>
<td style="text-align: center; padding: 8px;">39.3</td>
<td style="text-align: center; padding: 8px;">66.8</td>
<td style="text-align: center; padding: 8px;">66.8</td>
<td style="text-align: center; padding: 8px;"><strong>91.4</strong></td>
<td style="text-align: center; padding: 8px;">79.9</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>kanana-1.5-8b-instruct-2505</strong></td>
<td style="text-align: center; padding: 8px;">8.0B</td>
<td style="text-align: center; padding: 8px;">40.4</td>
<td style="text-align: center; padding: 8px;">35.5</td>
<td style="text-align: center; padding: 8px;">71.1</td>
<td style="text-align: center; padding: 8px;">63.1</td>
<td style="text-align: center; padding: 8px;">79.3</td>
<td style="text-align: center; padding: 8px;">76.8</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>Midm-2.0-Base-Instruct</strong></td>
<td style="text-align: center; padding: 8px;">11.5B</td>
<td style="text-align: center; padding: 8px;">54.2</td>
<td style="text-align: center; padding: 8px;">46.0</td>
<td style="text-align: center; padding: 8px;"><strong>75.0</strong></td>
<td style="text-align: center; padding: 8px;">70.2</td>
<td style="text-align: center; padding: 8px;">88.9</td>
<td style="text-align: center; padding: 8px;">79.7</td>
</tr>
<tr>
<td style="padding: 8px;"><strong>Qwen3-8B(w/o reasoning)</strong></td>
<td style="text-align: center; padding: 8px;">8.1B</td>
<td style="text-align: center; padding: 8px;">0.0(*)</td>
<td style="text-align: center; padding: 8px;">40.0</td>
<td style="text-align: center; padding: 8px;">70.9</td>
<td style="text-align: center; padding: 8px;">7.4(*)</td>
<td style="text-align: center; padding: 8px;">84.0</td>
<td style="text-align: center; padding: 8px;"><strong>82.8</strong></td>
</tr>
</tbody>
</table>
Note:
* The highest scores are shown in bold.
* (*) Qwen3 models often failed to follow the required answer format in the few-shot setting. As a result, the MMLU and KMMLU scores are markedly lower than expected and should be considered unreliable.
## **Benchmark Setup**
All benchmarks were executed using the following standardized environment.
* **Evaluation Framework**: `lm-evaluation-harness v0.4.9`
* **Runtime & Hardware**: All models were served with `vLLM v0.9.1` on a single NVIDIA GPU.
* **Inference Mode**: For every benchmark, we invoked the `chat_completions` API, and scores were computed solely from the generated responses.
#### **Metric Adjustments**
* MMLU was evaluated following the KMMLU protocol.
* Ko-IFEval was evaluated using the original IFEval protocol, with the dataset sourced from [allganize/IFEval-Ko](https://huggingface.co/datasets/allganize/IFEval-Ko).
#### **Evaluation Protocol**
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Scoring Method</th>
<th>Few-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>KMMLU</strong></td>
<td><code>exact_match</code></td>
<td>5-shot</td>
</tr>
<tr>
<td><strong>HRM8K</strong></td>
<td>mean of <code>hrm8k_gsm8k</code>, <code>hrm8k_ksm</code>, <code>hrm8k_math</code>, <code>hrm8k_mmmlu</code>, <code>hrm8k_omni_math</code></td>
<td>5-shot</td>
</tr>
<tr>
<td><strong>Ko-IFEval</strong></td>
<td>mean of <code>prompt_level_strict_acc</code>, <code>inst_level_strict_acc</code>, <code>prompt_level_loose_acc</code>, <code>inst_level_loose_acc</code></td>
<td>0-shot</td>
</tr>
<tr>
<td><strong>MMLU</strong></td>
<td><code>exact_match</code></td>
<td>5-shot</td>
</tr>
<tr>
<td><strong>GSM8K</strong></td>
<td><code>exact_match</code> & <code>flexible-extract</code></td>
<td>5-shot</td>
</tr>
<tr>
<td><strong>IFEval</strong></td>
<td>mean of <code>prompt_level_strict_acc</code>, <code>inst_level_strict_acc</code>, <code>prompt_level_loose_acc</code>, <code>inst_level_loose_acc</code></td>
<td>0-shot</td>
</tr>
</tbody>
</table>
## Quickstart
**Konan-LLM-OND** is supported in `transformers v4.52.0` and later.
```bash
pip install transformers>=4.52.0
```
The code example below shows you how to get the model to generate content based on given inputs.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "konantech/Konan-LLM-OND"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "๋ํ๋ฏผ๊ตญ ์๋๋?"}
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=64,
do_sample=False,
)
len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)
# ๋ํ๋ฏผ๊ตญ ์๋๋ ์์ธ์
๋๋ค.
```
## Citation
```
@misc{Konan-LLM-OND-2025,
author = {Konan Technology Inc.},
title = {Konan-LLM-OND},
year = {2025},
url = {https://huggingface.co/konantech/Konan-LLM-OND}
}
```
|