File size: 13,159 Bytes
4bc96c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-4B-Base
tags:
- konanllm
language:
- ko
- en
---
# Konan-LLM-OND

## **Overview**

**Konan-LLM-OND**, a large language model from Konan Technology Inc., is based on [Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base). It has been specifically optimized for the Korean language through vocabulary expansion, continual pre-training, and instruction tuning to enhance performance and efficiency.
* **Languages**: Primarily Korean, with support for English.
* **Key Features:**
  * **Expanded Korean Vocabulary:** The model's vocabulary has been expanded with additional Korean tokens to improve tokenization efficiency. As a result, Konan-LLM-OND is approximately 30% more token-efficient with Korean input than Qwen3, leading to greater cost-effectiveness and processing speed.
  * **Continual Pre-training**: The model underwent continual pre-training on a large-scale Korean corpus using an expanded vocabulary. This process enhanced its fundamental understanding and text generation capabilities in Korean.
  * **Supervised Fine-Tuning (SFT):** The model was fine-tuned on a high-quality Korean instruction dataset to improve its ability to understand and execute a wide variety of real-world tasks.

## Benchmark Results

#### **Model Performance (๏ผœ 5B)**

<table border="1" style="border-collapse: collapse; width: 100%;">
  <thead>
    <tr>
      <th rowspan="2" style="text-align: center; padding: 8px;">Model</th>
      <th rowspan="2" style="text-align: center; padding: 8px;">Model size</th>
      <th colspan="3" style="text-align: center; padding: 8px;">Korean</th>
      <th colspan="3" style="text-align: center; padding: 8px;">English</th>
    </tr>
    <tr>
      <th style="text-align: center; padding: 8px;">KMMLU</th>
      <th style="text-align: center; padding: 8px;">HRM8K</th>
      <th style="text-align: center; padding: 8px;">Ko-IFEval</th>
      <th style="text-align: center; padding: 8px;">MMLU</th>
      <th style="text-align: center; padding: 8px;">GSM8K</th>
      <th style="text-align: center; padding: 8px;">IFEval</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="padding: 8px;"><strong>Konan-LLM-OND</strong></td>
      <td style="text-align: center; padding: 8px;">4.0B</td>
      <td style="text-align: center; padding: 8px;"><strong>50.6<strong></td>
      <td style="text-align: center; padding: 8px;"><strong>46.4<strong></td>
      <td style="text-align: center; padding: 8px;">68.4</td>
      <td style="text-align: center; padding: 8px;"><strong>68.8<strong></td>
      <td style="text-align: center; padding: 8px;"><strong>86.8<strong></td>
      <td style="text-align: center; padding: 8px;">73.3</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>EXAONE-3.5-2.4B-Instruct</strong></td>
      <td style="text-align: center; padding: 8px;">2.4B</td>
      <td style="text-align: center; padding: 8px;">44.2</td>
      <td style="text-align: center; padding: 8px;">31.8</td>
      <td style="text-align: center; padding: 8px;">60.5</td>
      <td style="text-align: center; padding: 8px;">59.1</td>
      <td style="text-align: center; padding: 8px;">81.5</td>
      <td style="text-align: center; padding: 8px;">77.7</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>kanana-1.5-2.1b-instruct-2505</strong></td>
      <td style="text-align: center; padding: 8px;">2.1B</td>
      <td style="text-align: center; padding: 8px;">32.7</td>
      <td style="text-align: center; padding: 8px;">27.2</td>
      <td style="text-align: center; padding: 8px;">56.0</td>
      <td style="text-align: center; padding: 8px;">52.9</td>
      <td style="text-align: center; padding: 8px;">68.8</td>
      <td style="text-align: center; padding: 8px;">64.6</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>Midm-2.0-Mini-Instruct</strong></td>
      <td style="text-align: center; padding: 8px;">2.3B</td>
      <td style="text-align: center; padding: 8px;">42.4</td>
      <td style="text-align: center; padding: 8px;">36.2</td>
      <td style="text-align: center; padding: 8px;">66.8</td>
      <td style="text-align: center; padding: 8px;">57.4</td>
      <td style="text-align: center; padding: 8px;">74.8</td>
      <td style="text-align: center; padding: 8px;">68.3</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>Qwen3-4B(w/o reasoning)</strong></td>
      <td style="text-align: center; padding: 8px;">4.0B</td>
      <td style="text-align: center; padding: 8px;">0.0(*)</td>
      <td style="text-align: center; padding: 8px;">37.5</td>
      <td style="text-align: center; padding: 8px;">68.4</td>
      <td style="text-align: center; padding: 8px;">29.4(*)</td>
      <td style="text-align: center; padding: 8px;">83.9</td>
      <td style="text-align: center; padding: 8px;"><strong>80.0<strong></td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>gemma-3-4b-it</strong></td>
      <td style="text-align: center; padding: 8px;">4.3B</td>
      <td style="text-align: center; padding: 8px;">38.7</td>
      <td style="text-align: center; padding: 8px;">32.7</td>
      <td style="text-align: center; padding: 8px;"><strong>69.2<strong></td>
      <td style="text-align: center; padding: 8px;">59.1</td>
      <td style="text-align: center; padding: 8px;">82.2</td>
      <td style="text-align: center; padding: 8px;">78.3</td>
    </tr>
  </tbody>
</table>

#### **Model Performance (โ‰ฅ 7B)**

<table border="1" style="border-collapse: collapse; width: 100%;">
  <thead>
    <tr>
      <th rowspan="2" style="text-align: center; padding: 8px;">Model</th>
      <th rowspan="2" style="text-align: center; padding: 8px;">Model size</th>
      <th colspan="3" style="text-align: center; padding: 8px;">Korean</th>
      <th colspan="3" style="text-align: center; padding: 8px;">English</th>
    </tr>
    <tr>
      <th style="text-align: center; padding: 8px;">KMMLU</th>
      <th style="text-align: center; padding: 8px;">HRM8K</th>
      <th style="text-align: center; padding: 8px;">Ko-IFEval</th>
      <th style="text-align: center; padding: 8px;">MMLU</th>
      <th style="text-align: center; padding: 8px;">GSM8K</th>
      <th style="text-align: center; padding: 8px;">IFEval</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="padding: 8px;"><strong>Konan-LLM-OND</strong></td>
      <td style="text-align: center; padding: 8px;">4.0B</td>
      <td style="text-align: center; padding: 8px;">50.6</td>
      <td style="text-align: center; padding: 8px;"><strong>46.4</strong></td>
      <td style="text-align: center; padding: 8px;">68.4</td>
      <td style="text-align: center; padding: 8px;">68.8</td>
      <td style="text-align: center; padding: 8px;">86.8</td>
      <td style="text-align: center; padding: 8px;">73.3</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>A.X-4.0-Light</strong></td>
      <td style="text-align: center; padding: 8px;">7.2B</td>
      <td style="text-align: center; padding: 8px;"><strong>55.3</strong></td>
      <td style="text-align: center; padding: 8px;">44.6</td>
      <td style="text-align: center; padding: 8px;">71.5</td>
      <td style="text-align: center; padding: 8px;"><strong>70.6</strong></td>
      <td style="text-align: center; padding: 8px;">87.3</td>
      <td style="text-align: center; padding: 8px;">81.3</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>EXAONE-3.5-7.8B-Instruct</strong></td>
      <td style="text-align: center; padding: 8px;">7.8B</td>
      <td style="text-align: center; padding: 8px;">48.0</td>
      <td style="text-align: center; padding: 8px;">39.3</td>
      <td style="text-align: center; padding: 8px;">66.8</td>
      <td style="text-align: center; padding: 8px;">66.8</td>
      <td style="text-align: center; padding: 8px;"><strong>91.4</strong></td>
      <td style="text-align: center; padding: 8px;">79.9</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>kanana-1.5-8b-instruct-2505</strong></td>
      <td style="text-align: center; padding: 8px;">8.0B</td>
      <td style="text-align: center; padding: 8px;">40.4</td>
      <td style="text-align: center; padding: 8px;">35.5</td>
      <td style="text-align: center; padding: 8px;">71.1</td>
      <td style="text-align: center; padding: 8px;">63.1</td>
      <td style="text-align: center; padding: 8px;">79.3</td>
      <td style="text-align: center; padding: 8px;">76.8</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>Midm-2.0-Base-Instruct</strong></td>
      <td style="text-align: center; padding: 8px;">11.5B</td>
      <td style="text-align: center; padding: 8px;">54.2</td>
      <td style="text-align: center; padding: 8px;">46.0</td>
      <td style="text-align: center; padding: 8px;"><strong>75.0</strong></td>
      <td style="text-align: center; padding: 8px;">70.2</td>
      <td style="text-align: center; padding: 8px;">88.9</td>
      <td style="text-align: center; padding: 8px;">79.7</td>
    </tr>
    <tr>
      <td style="padding: 8px;"><strong>Qwen3-8B(w/o reasoning)</strong></td>
      <td style="text-align: center; padding: 8px;">8.1B</td>
      <td style="text-align: center; padding: 8px;">0.0(*)</td>
      <td style="text-align: center; padding: 8px;">40.0</td>
      <td style="text-align: center; padding: 8px;">70.9</td>
      <td style="text-align: center; padding: 8px;">7.4(*)</td>
      <td style="text-align: center; padding: 8px;">84.0</td>
      <td style="text-align: center; padding: 8px;"><strong>82.8</strong></td>
    </tr>
  </tbody>
</table>

Note:
* The highest scores are shown in bold.
* (*) Qwen3 models often failed to follow the required answer format in the few-shot setting. As a result, the MMLU and KMMLU scores are markedly lower than expected and should be considered unreliable.

## **Benchmark Setup**

All benchmarks were executed using the following standardized environment.

* **Evaluation Framework**: `lm-evaluation-harness v0.4.9`
* **Runtime & Hardware**: All models were served with `vLLM v0.9.1` on a single NVIDIA GPU.
* **Inference Mode**: For every benchmark, we invoked the `chat_completions` API, and scores were computed solely from the generated responses.

#### **Metric Adjustments**

* MMLU was evaluated following the KMMLU protocol.
* Ko-IFEval was evaluated using the original IFEval protocol, with the dataset sourced from [allganize/IFEval-Ko](https://huggingface.co/datasets/allganize/IFEval-Ko).

#### **Evaluation Protocol**

<table>
  <thead>
    <tr>
      <th>Benchmark</th>
      <th>Scoring Method</th>
      <th>Few-shot</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><strong>KMMLU</strong></td>
      <td><code>exact_match</code></td>
      <td>5-shot</td>
    </tr>
    <tr>
      <td><strong>HRM8K</strong></td>
      <td>mean of <code>hrm8k_gsm8k</code>, <code>hrm8k_ksm</code>, <code>hrm8k_math</code>, <code>hrm8k_mmmlu</code>, <code>hrm8k_omni_math</code></td>
      <td>5-shot</td>
    </tr>
    <tr>
      <td><strong>Ko-IFEval</strong></td>
      <td>mean of <code>prompt_level_strict_acc</code>, <code>inst_level_strict_acc</code>, <code>prompt_level_loose_acc</code>, <code>inst_level_loose_acc</code></td>
      <td>0-shot</td>
    </tr>
    <tr>
      <td><strong>MMLU</strong></td>
      <td><code>exact_match</code></td>
      <td>5-shot</td>
    </tr>
    <tr>
      <td><strong>GSM8K</strong></td>
      <td><code>exact_match</code> &amp; <code>flexible-extract</code></td>
      <td>5-shot</td>
    </tr>
    <tr>
      <td><strong>IFEval</strong></td>
      <td>mean of <code>prompt_level_strict_acc</code>, <code>inst_level_strict_acc</code>, <code>prompt_level_loose_acc</code>, <code>inst_level_loose_acc</code></td>
      <td>0-shot</td>
    </tr>
  </tbody>
</table>

## Quickstart

**Konan-LLM-OND** is supported in `transformers v4.52.0` and later.
```bash
pip install transformers>=4.52.0
```
 
The code example below shows you how to get the model to generate content based on given inputs.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "konantech/Konan-LLM-OND"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ ์ˆ˜๋„๋Š”?"}
]


input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

with torch.no_grad():
    output = model.generate(
        input_ids,
        max_new_tokens=64,
        do_sample=False,
    )

len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)
# ๋Œ€ํ•œ๋ฏผ๊ตญ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค.
```

## Citation
```
@misc{Konan-LLM-OND-2025,
  author = {Konan Technology Inc.},
  title = {Konan-LLM-OND},
  year = {2025},
  url = {https://huggingface.co/konantech/Konan-LLM-OND}
}
```