--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.78 --- [Visualize in Weights & Biases](https://wandb.ai/scott-poynts-nil/huggingface/runs/mvcwa6jm) [Visualize in Weights & Biases](https://wandb.ai/scott-poynts-nil/huggingface/runs/mvcwa6jm) # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9511 - Accuracy: 0.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6478 | 0.9912 | 56 | 0.7848 | 0.77 | | 0.4009 | 2.0 | 113 | 0.8213 | 0.73 | | 0.2155 | 2.9912 | 169 | 0.7877 | 0.76 | | 0.1813 | 4.0 | 226 | 0.8529 | 0.75 | | 0.0851 | 4.9912 | 282 | 0.8632 | 0.73 | | 0.063 | 6.0 | 339 | 0.9026 | 0.78 | | 0.0372 | 6.9912 | 395 | 0.8418 | 0.8 | | 0.021 | 8.0 | 452 | 0.8672 | 0.79 | | 0.0113 | 8.9912 | 508 | 0.9186 | 0.79 | | 0.0098 | 9.9115 | 560 | 0.9511 | 0.78 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1