korbih commited on
Commit
c629baf
·
verified ·
1 Parent(s): 8261d2c

Upload output with latest checkpoint

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-69/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: korbih/Qwen2-VL-ui-sensei-curriculum-1-merged
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
TRAINING_COMPLETE ADDED
File without changes
adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "korbih/Qwen2-VL-ui-sensei-curriculum-1-merged",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "lm_head",
28
+ "down_proj",
29
+ "k_proj",
30
+ "q_proj",
31
+ "gate_proj",
32
+ "up_proj",
33
+ "v_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d0e706970dc49398e294e3eb628f4569bd8ddffc912fa5a158b399e7c3fcbb8
3
+ size 1432933648
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{% if message['role'] == 'assistant' %}{% generation %}{{ message['content'] }}{% endgeneration %}{% else %}{{ message['content'] }}{% endif %}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{% if message['role'] == 'assistant' %}{% generation %}{{ content['text'] }}{% endgeneration %}{% else %}{{ content['text'] }}{% endif %}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-69/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: korbih/Qwen2-VL-ui-sensei-curriculum-1-merged
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-69/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "korbih/Qwen2-VL-ui-sensei-curriculum-1-merged",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "lm_head",
28
+ "down_proj",
29
+ "k_proj",
30
+ "q_proj",
31
+ "gate_proj",
32
+ "up_proj",
33
+ "v_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
checkpoint-69/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d0e706970dc49398e294e3eb628f4569bd8ddffc912fa5a158b399e7c3fcbb8
3
+ size 1432933648
checkpoint-69/added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
checkpoint-69/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{% if message['role'] == 'assistant' %}{% generation %}{{ message['content'] }}{% endgeneration %}{% else %}{{ message['content'] }}{% endif %}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{% if message['role'] == 'assistant' %}{% generation %}{{ content['text'] }}{% endgeneration %}{% else %}{{ content['text'] }}{% endif %}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-69/global_step69/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1985fae4facd71ff47e1c3dc8ec3c89514060d4b196706bfcddbb19c5d6e4a3
3
+ size 1028679440
checkpoint-69/global_step69/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1759347438f2cc3941a1a2645b7f796ea6b8aec474eadd352317edd85565f304
3
+ size 1028676944
checkpoint-69/global_step69/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34abf6849670a3b1651c2617112a75d6ac8e89cef0a8b779189c81010a8cc6b9
3
+ size 343210796
checkpoint-69/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step69
checkpoint-69/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-69/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 1048576,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-69/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23c0b258015b388f13cda16100efe0b6d1cfb9ed2aaa61e0a9c866a10c063b3c
3
+ size 14512
checkpoint-69/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818099f2499b673e016c11bacc043b2bdef8c5e4bc337807f1f233839b98ae81
3
+ size 14512
checkpoint-69/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-69/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
checkpoint-69/tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "right",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
checkpoint-69/trainer_state.json ADDED
@@ -0,0 +1,1068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 69,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 131.1875,
14
+ "epoch": 0.014492753623188406,
15
+ "grad_norm": 0.6139106154441833,
16
+ "kl": 0.0,
17
+ "learning_rate": 9.855072463768118e-06,
18
+ "loss": 0.0,
19
+ "reward": 2.4375,
20
+ "reward_std": 0.5868084877729416,
21
+ "rewards/format_reward_custom": 1.0,
22
+ "rewards/high_level_action_reward": 0.625,
23
+ "rewards/low_level_action_reward": 0.8125,
24
+ "step": 1
25
+ },
26
+ {
27
+ "clip_ratio": 0.0,
28
+ "completion_length": 127.5625,
29
+ "epoch": 0.028985507246376812,
30
+ "grad_norm": 0.5722443461418152,
31
+ "kl": 0.00024318695068359375,
32
+ "learning_rate": 9.710144927536233e-06,
33
+ "loss": 0.0,
34
+ "reward": 2.5,
35
+ "reward_std": 0.5239592343568802,
36
+ "rewards/format_reward_custom": 1.0,
37
+ "rewards/high_level_action_reward": 0.6875,
38
+ "rewards/low_level_action_reward": 0.8125,
39
+ "step": 2
40
+ },
41
+ {
42
+ "clip_ratio": 0.0,
43
+ "completion_length": 131.4375,
44
+ "epoch": 0.043478260869565216,
45
+ "grad_norm": 0.5824880003929138,
46
+ "kl": 0.00020122528076171875,
47
+ "learning_rate": 9.565217391304349e-06,
48
+ "loss": 0.0,
49
+ "reward": 2.65625,
50
+ "reward_std": 0.2651650384068489,
51
+ "rewards/format_reward_custom": 1.0,
52
+ "rewards/high_level_action_reward": 0.71875,
53
+ "rewards/low_level_action_reward": 0.9375,
54
+ "step": 3
55
+ },
56
+ {
57
+ "clip_ratio": 0.0,
58
+ "completion_length": 118.6875,
59
+ "epoch": 0.057971014492753624,
60
+ "grad_norm": 0.36597952246665955,
61
+ "kl": 0.00018024444580078125,
62
+ "learning_rate": 9.420289855072464e-06,
63
+ "loss": 0.0,
64
+ "reward": 2.9375,
65
+ "reward_std": 0.1157275140285492,
66
+ "rewards/format_reward_custom": 1.0,
67
+ "rewards/high_level_action_reward": 0.9375,
68
+ "rewards/low_level_action_reward": 1.0,
69
+ "step": 4
70
+ },
71
+ {
72
+ "clip_ratio": 0.0,
73
+ "completion_length": 152.5625,
74
+ "epoch": 0.07246376811594203,
75
+ "grad_norm": 0.6035860180854797,
76
+ "kl": 0.0002532005310058594,
77
+ "learning_rate": 9.275362318840581e-06,
78
+ "loss": 0.0,
79
+ "reward": 2.5625,
80
+ "reward_std": 0.5609941333532333,
81
+ "rewards/format_reward_custom": 1.0,
82
+ "rewards/high_level_action_reward": 0.8125,
83
+ "rewards/low_level_action_reward": 0.75,
84
+ "step": 5
85
+ },
86
+ {
87
+ "clip_ratio": 0.0,
88
+ "completion_length": 127.4375,
89
+ "epoch": 0.08695652173913043,
90
+ "grad_norm": 0.6012734174728394,
91
+ "kl": 0.00024127960205078125,
92
+ "learning_rate": 9.130434782608697e-06,
93
+ "loss": 0.0,
94
+ "reward": 2.53125,
95
+ "reward_std": 0.619232714176178,
96
+ "rewards/format_reward_custom": 1.0,
97
+ "rewards/high_level_action_reward": 0.84375,
98
+ "rewards/low_level_action_reward": 0.6875,
99
+ "step": 6
100
+ },
101
+ {
102
+ "clip_ratio": 0.0,
103
+ "completion_length": 144.125,
104
+ "epoch": 0.10144927536231885,
105
+ "grad_norm": 0.5445747375488281,
106
+ "kl": 0.000244140625,
107
+ "learning_rate": 8.985507246376812e-06,
108
+ "loss": 0.0,
109
+ "reward": 2.59375,
110
+ "reward_std": 0.38138842582702637,
111
+ "rewards/format_reward_custom": 1.0,
112
+ "rewards/high_level_action_reward": 0.84375,
113
+ "rewards/low_level_action_reward": 0.75,
114
+ "step": 7
115
+ },
116
+ {
117
+ "clip_ratio": 0.0,
118
+ "completion_length": 129.375,
119
+ "epoch": 0.11594202898550725,
120
+ "grad_norm": 0.5511504411697388,
121
+ "kl": 0.0002574920654296875,
122
+ "learning_rate": 8.840579710144929e-06,
123
+ "loss": 0.0,
124
+ "reward": 2.5625,
125
+ "reward_std": 0.4802234023809433,
126
+ "rewards/format_reward_custom": 1.0,
127
+ "rewards/high_level_action_reward": 0.75,
128
+ "rewards/low_level_action_reward": 0.8125,
129
+ "step": 8
130
+ },
131
+ {
132
+ "clip_ratio": 0.0,
133
+ "completion_length": 146.3125,
134
+ "epoch": 0.13043478260869565,
135
+ "grad_norm": 0.39530378580093384,
136
+ "kl": 0.000354766845703125,
137
+ "learning_rate": 8.695652173913044e-06,
138
+ "loss": 0.0,
139
+ "reward": 2.65625,
140
+ "reward_std": 0.35197147727012634,
141
+ "rewards/format_reward_custom": 1.0,
142
+ "rewards/high_level_action_reward": 0.84375,
143
+ "rewards/low_level_action_reward": 0.8125,
144
+ "step": 9
145
+ },
146
+ {
147
+ "clip_ratio": 0.0,
148
+ "completion_length": 140.375,
149
+ "epoch": 0.14492753623188406,
150
+ "grad_norm": 0.6552218794822693,
151
+ "kl": 0.0005092620849609375,
152
+ "learning_rate": 8.55072463768116e-06,
153
+ "loss": 0.0,
154
+ "reward": 2.4375,
155
+ "reward_std": 0.5546489059925079,
156
+ "rewards/format_reward_custom": 1.0,
157
+ "rewards/high_level_action_reward": 0.75,
158
+ "rewards/low_level_action_reward": 0.6875,
159
+ "step": 10
160
+ },
161
+ {
162
+ "clip_ratio": 0.0,
163
+ "completion_length": 133.8125,
164
+ "epoch": 0.15942028985507245,
165
+ "grad_norm": 0.5951517224311829,
166
+ "kl": 0.00035858154296875,
167
+ "learning_rate": 8.405797101449275e-06,
168
+ "loss": 0.0,
169
+ "reward": 2.78125,
170
+ "reward_std": 0.3061639815568924,
171
+ "rewards/format_reward_custom": 1.0,
172
+ "rewards/high_level_action_reward": 0.84375,
173
+ "rewards/low_level_action_reward": 0.9375,
174
+ "step": 11
175
+ },
176
+ {
177
+ "clip_ratio": 0.0,
178
+ "completion_length": 135.3125,
179
+ "epoch": 0.17391304347826086,
180
+ "grad_norm": 0.5633934140205383,
181
+ "kl": 0.0006542205810546875,
182
+ "learning_rate": 8.260869565217392e-06,
183
+ "loss": 0.0,
184
+ "reward": 2.625,
185
+ "reward_std": 0.2925042062997818,
186
+ "rewards/format_reward_custom": 1.0,
187
+ "rewards/high_level_action_reward": 0.8125,
188
+ "rewards/low_level_action_reward": 0.8125,
189
+ "step": 12
190
+ },
191
+ {
192
+ "clip_ratio": 0.0,
193
+ "completion_length": 123.5625,
194
+ "epoch": 0.18840579710144928,
195
+ "grad_norm": 0.6226204037666321,
196
+ "kl": 0.0006656646728515625,
197
+ "learning_rate": 8.115942028985508e-06,
198
+ "loss": 0.0,
199
+ "reward": 2.59375,
200
+ "reward_std": 0.35564958304166794,
201
+ "rewards/format_reward_custom": 1.0,
202
+ "rewards/high_level_action_reward": 0.78125,
203
+ "rewards/low_level_action_reward": 0.8125,
204
+ "step": 13
205
+ },
206
+ {
207
+ "clip_ratio": 0.0,
208
+ "completion_length": 105.625,
209
+ "epoch": 0.2028985507246377,
210
+ "grad_norm": 0.6195806264877319,
211
+ "kl": 0.000820159912109375,
212
+ "learning_rate": 7.971014492753623e-06,
213
+ "loss": 0.0,
214
+ "reward": 2.0,
215
+ "reward_std": 0.26726123690605164,
216
+ "rewards/format_reward_custom": 1.0,
217
+ "rewards/high_level_action_reward": 0.5,
218
+ "rewards/low_level_action_reward": 0.5,
219
+ "step": 14
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 125.1875,
224
+ "epoch": 0.21739130434782608,
225
+ "grad_norm": 0.6649656891822815,
226
+ "kl": 0.000728607177734375,
227
+ "learning_rate": 7.82608695652174e-06,
228
+ "loss": 0.0,
229
+ "reward": 2.625,
230
+ "reward_std": 0.5720614045858383,
231
+ "rewards/format_reward_custom": 1.0,
232
+ "rewards/high_level_action_reward": 0.8125,
233
+ "rewards/low_level_action_reward": 0.8125,
234
+ "step": 15
235
+ },
236
+ {
237
+ "clip_ratio": 0.0,
238
+ "completion_length": 133.9375,
239
+ "epoch": 0.2318840579710145,
240
+ "grad_norm": 0.5864853262901306,
241
+ "kl": 0.000736236572265625,
242
+ "learning_rate": 7.681159420289856e-06,
243
+ "loss": 0.0,
244
+ "reward": 2.4375,
245
+ "reward_std": 0.5585024058818817,
246
+ "rewards/format_reward_custom": 1.0,
247
+ "rewards/high_level_action_reward": 0.8125,
248
+ "rewards/low_level_action_reward": 0.625,
249
+ "step": 16
250
+ },
251
+ {
252
+ "clip_ratio": 0.0,
253
+ "completion_length": 134.5,
254
+ "epoch": 0.2463768115942029,
255
+ "grad_norm": 0.6138740181922913,
256
+ "kl": 0.0010128021240234375,
257
+ "learning_rate": 7.536231884057972e-06,
258
+ "loss": 0.0,
259
+ "reward": 2.5,
260
+ "reward_std": 0.5500157475471497,
261
+ "rewards/format_reward_custom": 1.0,
262
+ "rewards/high_level_action_reward": 0.6875,
263
+ "rewards/low_level_action_reward": 0.8125,
264
+ "step": 17
265
+ },
266
+ {
267
+ "clip_ratio": 0.0,
268
+ "completion_length": 121.875,
269
+ "epoch": 0.2608695652173913,
270
+ "grad_norm": 0.5959410667419434,
271
+ "kl": 0.001262664794921875,
272
+ "learning_rate": 7.391304347826087e-06,
273
+ "loss": 0.0001,
274
+ "reward": 2.8125,
275
+ "reward_std": 0.31539323925971985,
276
+ "rewards/format_reward_custom": 1.0,
277
+ "rewards/high_level_action_reward": 0.875,
278
+ "rewards/low_level_action_reward": 0.9375,
279
+ "step": 18
280
+ },
281
+ {
282
+ "clip_ratio": 0.0,
283
+ "completion_length": 141.375,
284
+ "epoch": 0.2753623188405797,
285
+ "grad_norm": 0.5705474615097046,
286
+ "kl": 0.001049041748046875,
287
+ "learning_rate": 7.246376811594203e-06,
288
+ "loss": 0.0,
289
+ "reward": 2.28125,
290
+ "reward_std": 0.6677263081073761,
291
+ "rewards/format_reward_custom": 1.0,
292
+ "rewards/high_level_action_reward": 0.84375,
293
+ "rewards/low_level_action_reward": 0.4375,
294
+ "step": 19
295
+ },
296
+ {
297
+ "clip_ratio": 0.0,
298
+ "completion_length": 135.5625,
299
+ "epoch": 0.2898550724637681,
300
+ "grad_norm": 0.43123292922973633,
301
+ "kl": 0.001407623291015625,
302
+ "learning_rate": 7.10144927536232e-06,
303
+ "loss": 0.0001,
304
+ "reward": 2.90625,
305
+ "reward_std": 0.18600594997406006,
306
+ "rewards/format_reward_custom": 1.0,
307
+ "rewards/high_level_action_reward": 0.96875,
308
+ "rewards/low_level_action_reward": 0.9375,
309
+ "step": 20
310
+ },
311
+ {
312
+ "clip_ratio": 0.0,
313
+ "completion_length": 122.0,
314
+ "epoch": 0.30434782608695654,
315
+ "grad_norm": 0.6939437985420227,
316
+ "kl": 0.001312255859375,
317
+ "learning_rate": 6.956521739130435e-06,
318
+ "loss": 0.0001,
319
+ "reward": 2.625,
320
+ "reward_std": 0.39837799966335297,
321
+ "rewards/format_reward_custom": 1.0,
322
+ "rewards/high_level_action_reward": 0.8125,
323
+ "rewards/low_level_action_reward": 0.8125,
324
+ "step": 21
325
+ },
326
+ {
327
+ "clip_ratio": 0.0,
328
+ "completion_length": 118.3125,
329
+ "epoch": 0.3188405797101449,
330
+ "grad_norm": 0.6187354326248169,
331
+ "kl": 0.00099945068359375,
332
+ "learning_rate": 6.811594202898551e-06,
333
+ "loss": 0.0,
334
+ "reward": 2.90625,
335
+ "reward_std": 0.2651650384068489,
336
+ "rewards/format_reward_custom": 1.0,
337
+ "rewards/high_level_action_reward": 0.96875,
338
+ "rewards/low_level_action_reward": 0.9375,
339
+ "step": 22
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 137.125,
344
+ "epoch": 0.3333333333333333,
345
+ "grad_norm": 0.619391143321991,
346
+ "kl": 0.00128173828125,
347
+ "learning_rate": 6.666666666666667e-06,
348
+ "loss": 0.0001,
349
+ "reward": 2.53125,
350
+ "reward_std": 0.3966485261917114,
351
+ "rewards/format_reward_custom": 1.0,
352
+ "rewards/high_level_action_reward": 0.65625,
353
+ "rewards/low_level_action_reward": 0.875,
354
+ "step": 23
355
+ },
356
+ {
357
+ "clip_ratio": 0.0,
358
+ "completion_length": 113.375,
359
+ "epoch": 0.34782608695652173,
360
+ "grad_norm": 0.6596890687942505,
361
+ "kl": 0.001399993896484375,
362
+ "learning_rate": 6.521739130434783e-06,
363
+ "loss": 0.0001,
364
+ "reward": 2.75,
365
+ "reward_std": 0.32261285185813904,
366
+ "rewards/format_reward_custom": 1.0,
367
+ "rewards/high_level_action_reward": 0.75,
368
+ "rewards/low_level_action_reward": 1.0,
369
+ "step": 24
370
+ },
371
+ {
372
+ "clip_ratio": 0.0,
373
+ "completion_length": 132.6875,
374
+ "epoch": 0.36231884057971014,
375
+ "grad_norm": 0.6133448481559753,
376
+ "kl": 0.0009860992431640625,
377
+ "learning_rate": 6.376811594202898e-06,
378
+ "loss": 0.0,
379
+ "reward": 2.8125,
380
+ "reward_std": 0.45117098093032837,
381
+ "rewards/format_reward_custom": 1.0,
382
+ "rewards/high_level_action_reward": 0.9375,
383
+ "rewards/low_level_action_reward": 0.875,
384
+ "step": 25
385
+ },
386
+ {
387
+ "clip_ratio": 0.0,
388
+ "completion_length": 149.1875,
389
+ "epoch": 0.37681159420289856,
390
+ "grad_norm": 0.6592795848846436,
391
+ "kl": 0.00177764892578125,
392
+ "learning_rate": 6.2318840579710145e-06,
393
+ "loss": 0.0001,
394
+ "reward": 2.59375,
395
+ "reward_std": 0.6028470396995544,
396
+ "rewards/format_reward_custom": 0.9375,
397
+ "rewards/high_level_action_reward": 0.84375,
398
+ "rewards/low_level_action_reward": 0.8125,
399
+ "step": 26
400
+ },
401
+ {
402
+ "clip_ratio": 0.0,
403
+ "completion_length": 129.6875,
404
+ "epoch": 0.391304347826087,
405
+ "grad_norm": 0.5780444145202637,
406
+ "kl": 0.00179290771484375,
407
+ "learning_rate": 6.086956521739132e-06,
408
+ "loss": 0.0001,
409
+ "reward": 2.75,
410
+ "reward_std": 0.35841864347457886,
411
+ "rewards/format_reward_custom": 1.0,
412
+ "rewards/high_level_action_reward": 0.875,
413
+ "rewards/low_level_action_reward": 0.875,
414
+ "step": 27
415
+ },
416
+ {
417
+ "clip_ratio": 0.0,
418
+ "completion_length": 122.4375,
419
+ "epoch": 0.4057971014492754,
420
+ "grad_norm": 0.004627756774425507,
421
+ "kl": 0.00113677978515625,
422
+ "learning_rate": 5.942028985507247e-06,
423
+ "loss": 0.0,
424
+ "reward": 3.0,
425
+ "reward_std": 0.0,
426
+ "rewards/format_reward_custom": 1.0,
427
+ "rewards/high_level_action_reward": 1.0,
428
+ "rewards/low_level_action_reward": 1.0,
429
+ "step": 28
430
+ },
431
+ {
432
+ "clip_ratio": 0.0,
433
+ "completion_length": 141.0625,
434
+ "epoch": 0.42028985507246375,
435
+ "grad_norm": 0.5492585301399231,
436
+ "kl": 0.001590728759765625,
437
+ "learning_rate": 5.797101449275363e-06,
438
+ "loss": 0.0001,
439
+ "reward": 2.78125,
440
+ "reward_std": 0.2630179077386856,
441
+ "rewards/format_reward_custom": 1.0,
442
+ "rewards/high_level_action_reward": 0.78125,
443
+ "rewards/low_level_action_reward": 1.0,
444
+ "step": 29
445
+ },
446
+ {
447
+ "clip_ratio": 0.0,
448
+ "completion_length": 141.0,
449
+ "epoch": 0.43478260869565216,
450
+ "grad_norm": 0.5583959221839905,
451
+ "kl": 0.002197265625,
452
+ "learning_rate": 5.652173913043479e-06,
453
+ "loss": 0.0001,
454
+ "reward": 2.34375,
455
+ "reward_std": 0.38138842582702637,
456
+ "rewards/format_reward_custom": 1.0,
457
+ "rewards/high_level_action_reward": 0.65625,
458
+ "rewards/low_level_action_reward": 0.6875,
459
+ "step": 30
460
+ },
461
+ {
462
+ "clip_ratio": 0.0,
463
+ "completion_length": 132.8125,
464
+ "epoch": 0.4492753623188406,
465
+ "grad_norm": 0.5492476224899292,
466
+ "kl": 0.002262115478515625,
467
+ "learning_rate": 5.507246376811595e-06,
468
+ "loss": 0.0001,
469
+ "reward": 2.4375,
470
+ "reward_std": 0.5260358154773712,
471
+ "rewards/format_reward_custom": 1.0,
472
+ "rewards/high_level_action_reward": 0.875,
473
+ "rewards/low_level_action_reward": 0.5625,
474
+ "step": 31
475
+ },
476
+ {
477
+ "clip_ratio": 0.0,
478
+ "completion_length": 138.875,
479
+ "epoch": 0.463768115942029,
480
+ "grad_norm": 0.5487068891525269,
481
+ "kl": 0.00237274169921875,
482
+ "learning_rate": 5.362318840579711e-06,
483
+ "loss": 0.0001,
484
+ "reward": 2.59375,
485
+ "reward_std": 0.34475886821746826,
486
+ "rewards/format_reward_custom": 1.0,
487
+ "rewards/high_level_action_reward": 0.78125,
488
+ "rewards/low_level_action_reward": 0.8125,
489
+ "step": 32
490
+ },
491
+ {
492
+ "clip_ratio": 0.0,
493
+ "completion_length": 142.875,
494
+ "epoch": 0.4782608695652174,
495
+ "grad_norm": 0.5532354712486267,
496
+ "kl": 0.001415252685546875,
497
+ "learning_rate": 5.2173913043478265e-06,
498
+ "loss": 0.0001,
499
+ "reward": 2.65625,
500
+ "reward_std": 0.35098859667778015,
501
+ "rewards/format_reward_custom": 1.0,
502
+ "rewards/high_level_action_reward": 0.71875,
503
+ "rewards/low_level_action_reward": 0.9375,
504
+ "step": 33
505
+ },
506
+ {
507
+ "clip_ratio": 0.0,
508
+ "completion_length": 124.75,
509
+ "epoch": 0.4927536231884058,
510
+ "grad_norm": 0.5815756916999817,
511
+ "kl": 0.00170135498046875,
512
+ "learning_rate": 5.072463768115943e-06,
513
+ "loss": 0.0001,
514
+ "reward": 2.75,
515
+ "reward_std": 0.39837799966335297,
516
+ "rewards/format_reward_custom": 1.0,
517
+ "rewards/high_level_action_reward": 0.9375,
518
+ "rewards/low_level_action_reward": 0.8125,
519
+ "step": 34
520
+ },
521
+ {
522
+ "clip_ratio": 0.0,
523
+ "completion_length": 114.4375,
524
+ "epoch": 0.5072463768115942,
525
+ "grad_norm": 0.6308125257492065,
526
+ "kl": 0.0013580322265625,
527
+ "learning_rate": 4.927536231884059e-06,
528
+ "loss": 0.0001,
529
+ "reward": 2.625,
530
+ "reward_std": 0.3535533770918846,
531
+ "rewards/format_reward_custom": 1.0,
532
+ "rewards/high_level_action_reward": 0.875,
533
+ "rewards/low_level_action_reward": 0.75,
534
+ "step": 35
535
+ },
536
+ {
537
+ "clip_ratio": 0.0,
538
+ "completion_length": 148.625,
539
+ "epoch": 0.5217391304347826,
540
+ "grad_norm": 0.5474228858947754,
541
+ "kl": 0.00164031982421875,
542
+ "learning_rate": 4.782608695652174e-06,
543
+ "loss": 0.0001,
544
+ "reward": 2.625,
545
+ "reward_std": 0.4355512708425522,
546
+ "rewards/format_reward_custom": 1.0,
547
+ "rewards/high_level_action_reward": 0.875,
548
+ "rewards/low_level_action_reward": 0.75,
549
+ "step": 36
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 124.75,
554
+ "epoch": 0.5362318840579711,
555
+ "grad_norm": 0.46679696440696716,
556
+ "kl": 0.002105712890625,
557
+ "learning_rate": 4.637681159420291e-06,
558
+ "loss": 0.0001,
559
+ "reward": 2.78125,
560
+ "reward_std": 0.33905068039894104,
561
+ "rewards/format_reward_custom": 1.0,
562
+ "rewards/high_level_action_reward": 0.90625,
563
+ "rewards/low_level_action_reward": 0.875,
564
+ "step": 37
565
+ },
566
+ {
567
+ "clip_ratio": 0.0,
568
+ "completion_length": 131.125,
569
+ "epoch": 0.5507246376811594,
570
+ "grad_norm": 0.6113550662994385,
571
+ "kl": 0.002593994140625,
572
+ "learning_rate": 4.492753623188406e-06,
573
+ "loss": 0.0001,
574
+ "reward": 2.78125,
575
+ "reward_std": 0.3749881833791733,
576
+ "rewards/format_reward_custom": 1.0,
577
+ "rewards/high_level_action_reward": 0.90625,
578
+ "rewards/low_level_action_reward": 0.875,
579
+ "step": 38
580
+ },
581
+ {
582
+ "clip_ratio": 0.0,
583
+ "completion_length": 132.25,
584
+ "epoch": 0.5652173913043478,
585
+ "grad_norm": 0.6611613035202026,
586
+ "kl": 0.00252532958984375,
587
+ "learning_rate": 4.347826086956522e-06,
588
+ "loss": 0.0001,
589
+ "reward": 2.625,
590
+ "reward_std": 0.5487885922193527,
591
+ "rewards/format_reward_custom": 1.0,
592
+ "rewards/high_level_action_reward": 0.75,
593
+ "rewards/low_level_action_reward": 0.875,
594
+ "step": 39
595
+ },
596
+ {
597
+ "clip_ratio": 0.0,
598
+ "completion_length": 115.5,
599
+ "epoch": 0.5797101449275363,
600
+ "grad_norm": 0.6072784662246704,
601
+ "kl": 0.002056121826171875,
602
+ "learning_rate": 4.202898550724638e-06,
603
+ "loss": 0.0001,
604
+ "reward": 2.84375,
605
+ "reward_std": 0.3808925449848175,
606
+ "rewards/format_reward_custom": 1.0,
607
+ "rewards/high_level_action_reward": 0.90625,
608
+ "rewards/low_level_action_reward": 0.9375,
609
+ "step": 40
610
+ },
611
+ {
612
+ "clip_ratio": 0.0,
613
+ "completion_length": 129.875,
614
+ "epoch": 0.5942028985507246,
615
+ "grad_norm": 0.5880132913589478,
616
+ "kl": 0.0030670166015625,
617
+ "learning_rate": 4.057971014492754e-06,
618
+ "loss": 0.0001,
619
+ "reward": 2.65625,
620
+ "reward_std": 0.3966485261917114,
621
+ "rewards/format_reward_custom": 1.0,
622
+ "rewards/high_level_action_reward": 0.78125,
623
+ "rewards/low_level_action_reward": 0.875,
624
+ "step": 41
625
+ },
626
+ {
627
+ "clip_ratio": 0.0,
628
+ "completion_length": 120.75,
629
+ "epoch": 0.6086956521739131,
630
+ "grad_norm": 0.6412323117256165,
631
+ "kl": 0.0033416748046875,
632
+ "learning_rate": 3.91304347826087e-06,
633
+ "loss": 0.0001,
634
+ "reward": 2.21875,
635
+ "reward_std": 0.3818188011646271,
636
+ "rewards/format_reward_custom": 1.0,
637
+ "rewards/high_level_action_reward": 0.59375,
638
+ "rewards/low_level_action_reward": 0.625,
639
+ "step": 42
640
+ },
641
+ {
642
+ "clip_ratio": 0.0,
643
+ "completion_length": 131.3125,
644
+ "epoch": 0.6231884057971014,
645
+ "grad_norm": 0.6180394887924194,
646
+ "kl": 0.00208282470703125,
647
+ "learning_rate": 3.768115942028986e-06,
648
+ "loss": 0.0001,
649
+ "reward": 2.65625,
650
+ "reward_std": 0.5133327841758728,
651
+ "rewards/format_reward_custom": 1.0,
652
+ "rewards/high_level_action_reward": 0.84375,
653
+ "rewards/low_level_action_reward": 0.8125,
654
+ "step": 43
655
+ },
656
+ {
657
+ "clip_ratio": 0.0,
658
+ "completion_length": 128.5625,
659
+ "epoch": 0.6376811594202898,
660
+ "grad_norm": 0.6940774917602539,
661
+ "kl": 0.002685546875,
662
+ "learning_rate": 3.6231884057971017e-06,
663
+ "loss": 0.0001,
664
+ "reward": 2.625,
665
+ "reward_std": 0.44099316000938416,
666
+ "rewards/format_reward_custom": 0.9375,
667
+ "rewards/high_level_action_reward": 0.875,
668
+ "rewards/low_level_action_reward": 0.8125,
669
+ "step": 44
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 126.6875,
674
+ "epoch": 0.6521739130434783,
675
+ "grad_norm": 0.6032717227935791,
676
+ "kl": 0.00244140625,
677
+ "learning_rate": 3.4782608695652175e-06,
678
+ "loss": 0.0001,
679
+ "reward": 2.65625,
680
+ "reward_std": 0.5762138962745667,
681
+ "rewards/format_reward_custom": 1.0,
682
+ "rewards/high_level_action_reward": 0.84375,
683
+ "rewards/low_level_action_reward": 0.8125,
684
+ "step": 45
685
+ },
686
+ {
687
+ "clip_ratio": 0.0,
688
+ "completion_length": 137.25,
689
+ "epoch": 0.6666666666666666,
690
+ "grad_norm": 0.3984113335609436,
691
+ "kl": 0.001659393310546875,
692
+ "learning_rate": 3.3333333333333333e-06,
693
+ "loss": 0.0001,
694
+ "reward": 2.84375,
695
+ "reward_std": 0.2651650309562683,
696
+ "rewards/format_reward_custom": 1.0,
697
+ "rewards/high_level_action_reward": 0.90625,
698
+ "rewards/low_level_action_reward": 0.9375,
699
+ "step": 46
700
+ },
701
+ {
702
+ "clip_ratio": 0.0,
703
+ "completion_length": 134.3125,
704
+ "epoch": 0.6811594202898551,
705
+ "grad_norm": 0.37174344062805176,
706
+ "kl": 0.003200531005859375,
707
+ "learning_rate": 3.188405797101449e-06,
708
+ "loss": 0.0001,
709
+ "reward": 2.875,
710
+ "reward_std": 0.13363061845302582,
711
+ "rewards/format_reward_custom": 1.0,
712
+ "rewards/high_level_action_reward": 0.875,
713
+ "rewards/low_level_action_reward": 1.0,
714
+ "step": 47
715
+ },
716
+ {
717
+ "clip_ratio": 0.0,
718
+ "completion_length": 113.625,
719
+ "epoch": 0.6956521739130435,
720
+ "grad_norm": 0.6417880654335022,
721
+ "kl": 0.0034027099609375,
722
+ "learning_rate": 3.043478260869566e-06,
723
+ "loss": 0.0001,
724
+ "reward": 2.125,
725
+ "reward_std": 0.5175491571426392,
726
+ "rewards/format_reward_custom": 1.0,
727
+ "rewards/high_level_action_reward": 0.5,
728
+ "rewards/low_level_action_reward": 0.625,
729
+ "step": 48
730
+ },
731
+ {
732
+ "clip_ratio": 0.0,
733
+ "completion_length": 120.875,
734
+ "epoch": 0.7101449275362319,
735
+ "grad_norm": 0.3155536353588104,
736
+ "kl": 0.003082275390625,
737
+ "learning_rate": 2.8985507246376816e-06,
738
+ "loss": 0.0001,
739
+ "reward": 2.84375,
740
+ "reward_std": 0.18600594997406006,
741
+ "rewards/format_reward_custom": 1.0,
742
+ "rewards/high_level_action_reward": 0.90625,
743
+ "rewards/low_level_action_reward": 0.9375,
744
+ "step": 49
745
+ },
746
+ {
747
+ "clip_ratio": 0.0,
748
+ "completion_length": 133.3125,
749
+ "epoch": 0.7246376811594203,
750
+ "grad_norm": 0.6605053544044495,
751
+ "kl": 0.00164031982421875,
752
+ "learning_rate": 2.7536231884057974e-06,
753
+ "loss": 0.0001,
754
+ "reward": 2.65625,
755
+ "reward_std": 0.36348532140254974,
756
+ "rewards/format_reward_custom": 1.0,
757
+ "rewards/high_level_action_reward": 0.78125,
758
+ "rewards/low_level_action_reward": 0.875,
759
+ "step": 50
760
+ },
761
+ {
762
+ "clip_ratio": 0.0,
763
+ "completion_length": 141.9375,
764
+ "epoch": 0.7391304347826086,
765
+ "grad_norm": 0.5570524334907532,
766
+ "kl": 0.002655029296875,
767
+ "learning_rate": 2.6086956521739132e-06,
768
+ "loss": 0.0001,
769
+ "reward": 2.59375,
770
+ "reward_std": 0.7191916108131409,
771
+ "rewards/format_reward_custom": 1.0,
772
+ "rewards/high_level_action_reward": 0.78125,
773
+ "rewards/low_level_action_reward": 0.8125,
774
+ "step": 51
775
+ },
776
+ {
777
+ "clip_ratio": 0.0,
778
+ "completion_length": 141.1875,
779
+ "epoch": 0.7536231884057971,
780
+ "grad_norm": 0.4170561730861664,
781
+ "kl": 0.001430511474609375,
782
+ "learning_rate": 2.4637681159420295e-06,
783
+ "loss": 0.0001,
784
+ "reward": 2.90625,
785
+ "reward_std": 0.1293872892856598,
786
+ "rewards/format_reward_custom": 1.0,
787
+ "rewards/high_level_action_reward": 0.90625,
788
+ "rewards/low_level_action_reward": 1.0,
789
+ "step": 52
790
+ },
791
+ {
792
+ "clip_ratio": 0.0,
793
+ "completion_length": 121.5625,
794
+ "epoch": 0.7681159420289855,
795
+ "grad_norm": 0.6030449867248535,
796
+ "kl": 0.0033111572265625,
797
+ "learning_rate": 2.3188405797101453e-06,
798
+ "loss": 0.0001,
799
+ "reward": 2.212499976158142,
800
+ "reward_std": 0.46406444907188416,
801
+ "rewards/format_reward_custom": 1.0,
802
+ "rewards/high_level_action_reward": 0.5250000059604645,
803
+ "rewards/low_level_action_reward": 0.6875,
804
+ "step": 53
805
+ },
806
+ {
807
+ "clip_ratio": 0.0,
808
+ "completion_length": 130.0625,
809
+ "epoch": 0.782608695652174,
810
+ "grad_norm": 0.40535715222358704,
811
+ "kl": 0.001888275146484375,
812
+ "learning_rate": 2.173913043478261e-06,
813
+ "loss": 0.0001,
814
+ "reward": 2.90625,
815
+ "reward_std": 0.1293872892856598,
816
+ "rewards/format_reward_custom": 1.0,
817
+ "rewards/high_level_action_reward": 0.90625,
818
+ "rewards/low_level_action_reward": 1.0,
819
+ "step": 54
820
+ },
821
+ {
822
+ "clip_ratio": 0.0,
823
+ "completion_length": 133.25,
824
+ "epoch": 0.7971014492753623,
825
+ "grad_norm": 0.5601004958152771,
826
+ "kl": 0.00250244140625,
827
+ "learning_rate": 2.028985507246377e-06,
828
+ "loss": 0.0001,
829
+ "reward": 2.5,
830
+ "reward_std": 0.5945880711078644,
831
+ "rewards/format_reward_custom": 1.0,
832
+ "rewards/high_level_action_reward": 0.8125,
833
+ "rewards/low_level_action_reward": 0.6875,
834
+ "step": 55
835
+ },
836
+ {
837
+ "clip_ratio": 0.0,
838
+ "completion_length": 123.3125,
839
+ "epoch": 0.8115942028985508,
840
+ "grad_norm": 0.6125327348709106,
841
+ "kl": 0.00266265869140625,
842
+ "learning_rate": 1.884057971014493e-06,
843
+ "loss": 0.0001,
844
+ "reward": 2.625,
845
+ "reward_std": 0.3380180299282074,
846
+ "rewards/format_reward_custom": 1.0,
847
+ "rewards/high_level_action_reward": 0.75,
848
+ "rewards/low_level_action_reward": 0.875,
849
+ "step": 56
850
+ },
851
+ {
852
+ "clip_ratio": 0.0,
853
+ "completion_length": 139.875,
854
+ "epoch": 0.8260869565217391,
855
+ "grad_norm": 0.525627613067627,
856
+ "kl": 0.002033233642578125,
857
+ "learning_rate": 1.7391304347826088e-06,
858
+ "loss": 0.0001,
859
+ "reward": 2.65625,
860
+ "reward_std": 0.5649385899305344,
861
+ "rewards/format_reward_custom": 0.9375,
862
+ "rewards/high_level_action_reward": 0.84375,
863
+ "rewards/low_level_action_reward": 0.875,
864
+ "step": 57
865
+ },
866
+ {
867
+ "clip_ratio": 0.0,
868
+ "completion_length": 121.0,
869
+ "epoch": 0.8405797101449275,
870
+ "grad_norm": 0.6244301795959473,
871
+ "kl": 0.0027923583984375,
872
+ "learning_rate": 1.5942028985507246e-06,
873
+ "loss": 0.0001,
874
+ "reward": 2.875,
875
+ "reward_std": 0.27439429610967636,
876
+ "rewards/format_reward_custom": 1.0,
877
+ "rewards/high_level_action_reward": 0.9375,
878
+ "rewards/low_level_action_reward": 0.9375,
879
+ "step": 58
880
+ },
881
+ {
882
+ "clip_ratio": 0.0,
883
+ "completion_length": 134.6875,
884
+ "epoch": 0.855072463768116,
885
+ "grad_norm": 0.6077686548233032,
886
+ "kl": 0.0023651123046875,
887
+ "learning_rate": 1.4492753623188408e-06,
888
+ "loss": 0.0001,
889
+ "reward": 2.5,
890
+ "reward_std": 0.42632102966308594,
891
+ "rewards/format_reward_custom": 1.0,
892
+ "rewards/high_level_action_reward": 0.8125,
893
+ "rewards/low_level_action_reward": 0.6875,
894
+ "step": 59
895
+ },
896
+ {
897
+ "clip_ratio": 0.0,
898
+ "completion_length": 129.125,
899
+ "epoch": 0.8695652173913043,
900
+ "grad_norm": 0.549598217010498,
901
+ "kl": 0.001483917236328125,
902
+ "learning_rate": 1.3043478260869566e-06,
903
+ "loss": 0.0001,
904
+ "reward": 2.6875,
905
+ "reward_std": 0.4150373041629791,
906
+ "rewards/format_reward_custom": 1.0,
907
+ "rewards/high_level_action_reward": 0.875,
908
+ "rewards/low_level_action_reward": 0.8125,
909
+ "step": 60
910
+ },
911
+ {
912
+ "clip_ratio": 0.0,
913
+ "completion_length": 132.0625,
914
+ "epoch": 0.8840579710144928,
915
+ "grad_norm": 0.3656002879142761,
916
+ "kl": 0.00152587890625,
917
+ "learning_rate": 1.1594202898550726e-06,
918
+ "loss": 0.0001,
919
+ "reward": 2.837499976158142,
920
+ "reward_std": 0.18077217042446136,
921
+ "rewards/format_reward_custom": 1.0,
922
+ "rewards/high_level_action_reward": 0.9000000059604645,
923
+ "rewards/low_level_action_reward": 0.9375,
924
+ "step": 61
925
+ },
926
+ {
927
+ "clip_ratio": 0.0,
928
+ "completion_length": 150.25,
929
+ "epoch": 0.8985507246376812,
930
+ "grad_norm": 0.5994426012039185,
931
+ "kl": 0.0025482177734375,
932
+ "learning_rate": 1.0144927536231885e-06,
933
+ "loss": 0.0001,
934
+ "reward": 2.71875,
935
+ "reward_std": 0.36348532140254974,
936
+ "rewards/format_reward_custom": 1.0,
937
+ "rewards/high_level_action_reward": 0.84375,
938
+ "rewards/low_level_action_reward": 0.875,
939
+ "step": 62
940
+ },
941
+ {
942
+ "clip_ratio": 0.0,
943
+ "completion_length": 121.3125,
944
+ "epoch": 0.9130434782608695,
945
+ "grad_norm": 0.6515089273452759,
946
+ "kl": 0.0019683837890625,
947
+ "learning_rate": 8.695652173913044e-07,
948
+ "loss": 0.0001,
949
+ "reward": 2.21875,
950
+ "reward_std": 0.4966200590133667,
951
+ "rewards/format_reward_custom": 1.0,
952
+ "rewards/high_level_action_reward": 0.65625,
953
+ "rewards/low_level_action_reward": 0.5625,
954
+ "step": 63
955
+ },
956
+ {
957
+ "clip_ratio": 0.0,
958
+ "completion_length": 124.625,
959
+ "epoch": 0.927536231884058,
960
+ "grad_norm": 0.6351967453956604,
961
+ "kl": 0.002838134765625,
962
+ "learning_rate": 7.246376811594204e-07,
963
+ "loss": 0.0001,
964
+ "reward": 2.78125,
965
+ "reward_std": 0.3808925449848175,
966
+ "rewards/format_reward_custom": 1.0,
967
+ "rewards/high_level_action_reward": 0.84375,
968
+ "rewards/low_level_action_reward": 0.9375,
969
+ "step": 64
970
+ },
971
+ {
972
+ "clip_ratio": 0.0,
973
+ "completion_length": 121.6875,
974
+ "epoch": 0.9420289855072463,
975
+ "grad_norm": 0.6020182967185974,
976
+ "kl": 0.001895904541015625,
977
+ "learning_rate": 5.797101449275363e-07,
978
+ "loss": 0.0001,
979
+ "reward": 2.8125,
980
+ "reward_std": 0.3535533770918846,
981
+ "rewards/format_reward_custom": 0.9375,
982
+ "rewards/high_level_action_reward": 0.875,
983
+ "rewards/low_level_action_reward": 1.0,
984
+ "step": 65
985
+ },
986
+ {
987
+ "clip_ratio": 0.0,
988
+ "completion_length": 125.0,
989
+ "epoch": 0.9565217391304348,
990
+ "grad_norm": 0.6860438585281372,
991
+ "kl": 0.00278472900390625,
992
+ "learning_rate": 4.347826086956522e-07,
993
+ "loss": 0.0001,
994
+ "reward": 2.65625,
995
+ "reward_std": 0.2651650384068489,
996
+ "rewards/format_reward_custom": 1.0,
997
+ "rewards/high_level_action_reward": 0.71875,
998
+ "rewards/low_level_action_reward": 0.9375,
999
+ "step": 66
1000
+ },
1001
+ {
1002
+ "clip_ratio": 0.0,
1003
+ "completion_length": 123.875,
1004
+ "epoch": 0.9710144927536232,
1005
+ "grad_norm": 0.587708592414856,
1006
+ "kl": 0.003173828125,
1007
+ "learning_rate": 2.8985507246376816e-07,
1008
+ "loss": 0.0001,
1009
+ "reward": 2.625,
1010
+ "reward_std": 0.2925042062997818,
1011
+ "rewards/format_reward_custom": 1.0,
1012
+ "rewards/high_level_action_reward": 0.8125,
1013
+ "rewards/low_level_action_reward": 0.8125,
1014
+ "step": 67
1015
+ },
1016
+ {
1017
+ "clip_ratio": 0.0,
1018
+ "completion_length": 131.125,
1019
+ "epoch": 0.9855072463768116,
1020
+ "grad_norm": 0.5342994928359985,
1021
+ "kl": 0.002532958984375,
1022
+ "learning_rate": 1.4492753623188408e-07,
1023
+ "loss": 0.0001,
1024
+ "reward": 2.71875,
1025
+ "reward_std": 0.4419417232275009,
1026
+ "rewards/format_reward_custom": 1.0,
1027
+ "rewards/high_level_action_reward": 0.84375,
1028
+ "rewards/low_level_action_reward": 0.875,
1029
+ "step": 68
1030
+ },
1031
+ {
1032
+ "clip_ratio": 0.0,
1033
+ "completion_length": 122.875,
1034
+ "epoch": 1.0,
1035
+ "grad_norm": 0.43572136759757996,
1036
+ "kl": 0.00244140625,
1037
+ "learning_rate": 0.0,
1038
+ "loss": 0.0001,
1039
+ "reward": 2.875,
1040
+ "reward_std": 0.13363061845302582,
1041
+ "rewards/format_reward_custom": 1.0,
1042
+ "rewards/high_level_action_reward": 0.875,
1043
+ "rewards/low_level_action_reward": 1.0,
1044
+ "step": 69
1045
+ }
1046
+ ],
1047
+ "logging_steps": 1.0,
1048
+ "max_steps": 69,
1049
+ "num_input_tokens_seen": 0,
1050
+ "num_train_epochs": 1,
1051
+ "save_steps": 2,
1052
+ "stateful_callbacks": {
1053
+ "TrainerControl": {
1054
+ "args": {
1055
+ "should_epoch_stop": false,
1056
+ "should_evaluate": false,
1057
+ "should_log": false,
1058
+ "should_save": true,
1059
+ "should_training_stop": true
1060
+ },
1061
+ "attributes": {}
1062
+ }
1063
+ },
1064
+ "total_flos": 0.0,
1065
+ "train_batch_size": 4,
1066
+ "trial_name": null,
1067
+ "trial_params": null
1068
+ }
checkpoint-69/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec4d6271d133105d2cac453bf32849252af60188137b1c5b8cd038085a5c5bad
3
+ size 8056
checkpoint-69/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-69/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 1048576,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "right",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec4d6271d133105d2cac453bf32849252af60188137b1c5b8cd038085a5c5bad
3
+ size 8056
vocab.json ADDED
The diff for this file is too large to render. See raw diff