Upload output with latest checkpoint
Browse files- .gitattributes +2 -0
- README.md +202 -0
- TRAINING_COMPLETE +0 -0
- adapter_config.json +38 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- checkpoint-69/README.md +202 -0
- checkpoint-69/adapter_config.json +38 -0
- checkpoint-69/adapter_model.safetensors +3 -0
- checkpoint-69/added_tokens.json +16 -0
- checkpoint-69/chat_template.json +3 -0
- checkpoint-69/global_step69/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-69/global_step69/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-69/global_step69/mp_rank_00_model_states.pt +3 -0
- checkpoint-69/latest +1 -0
- checkpoint-69/merges.txt +0 -0
- checkpoint-69/preprocessor_config.json +29 -0
- checkpoint-69/rng_state_0.pth +3 -0
- checkpoint-69/rng_state_1.pth +3 -0
- checkpoint-69/special_tokens_map.json +31 -0
- checkpoint-69/tokenizer.json +3 -0
- checkpoint-69/tokenizer_config.json +145 -0
- checkpoint-69/trainer_state.json +1068 -0
- checkpoint-69/training_args.bin +3 -0
- checkpoint-69/vocab.json +0 -0
- checkpoint-69/zero_to_fp32.py +674 -0
- merges.txt +0 -0
- preprocessor_config.json +29 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +145 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-69/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: korbih/Qwen2-VL-ui-sensei-curriculum-1-merged
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
TRAINING_COMPLETE
ADDED
File without changes
|
adapter_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "korbih/Qwen2-VL-ui-sensei-curriculum-1-merged",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 128,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 64,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"o_proj",
|
27 |
+
"lm_head",
|
28 |
+
"down_proj",
|
29 |
+
"k_proj",
|
30 |
+
"q_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"up_proj",
|
33 |
+
"v_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"use_dora": false,
|
37 |
+
"use_rslora": false
|
38 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d0e706970dc49398e294e3eb628f4569bd8ddffc912fa5a158b399e7c3fcbb8
|
3 |
+
size 1432933648
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{% if message['role'] == 'assistant' %}{% generation %}{{ message['content'] }}{% endgeneration %}{% else %}{{ message['content'] }}{% endif %}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{% if message['role'] == 'assistant' %}{% generation %}{{ content['text'] }}{% endgeneration %}{% else %}{{ content['text'] }}{% endif %}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
checkpoint-69/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: korbih/Qwen2-VL-ui-sensei-curriculum-1-merged
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-69/adapter_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "korbih/Qwen2-VL-ui-sensei-curriculum-1-merged",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 128,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 64,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"o_proj",
|
27 |
+
"lm_head",
|
28 |
+
"down_proj",
|
29 |
+
"k_proj",
|
30 |
+
"q_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"up_proj",
|
33 |
+
"v_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"use_dora": false,
|
37 |
+
"use_rslora": false
|
38 |
+
}
|
checkpoint-69/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d0e706970dc49398e294e3eb628f4569bd8ddffc912fa5a158b399e7c3fcbb8
|
3 |
+
size 1432933648
|
checkpoint-69/added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
checkpoint-69/chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{% if message['role'] == 'assistant' %}{% generation %}{{ message['content'] }}{% endgeneration %}{% else %}{{ message['content'] }}{% endif %}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{% if message['role'] == 'assistant' %}{% generation %}{{ content['text'] }}{% endgeneration %}{% else %}{{ content['text'] }}{% endif %}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
checkpoint-69/global_step69/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1985fae4facd71ff47e1c3dc8ec3c89514060d4b196706bfcddbb19c5d6e4a3
|
3 |
+
size 1028679440
|
checkpoint-69/global_step69/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1759347438f2cc3941a1a2645b7f796ea6b8aec474eadd352317edd85565f304
|
3 |
+
size 1028676944
|
checkpoint-69/global_step69/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34abf6849670a3b1651c2617112a75d6ac8e89cef0a8b779189c81010a8cc6b9
|
3 |
+
size 343210796
|
checkpoint-69/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step69
|
checkpoint-69/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-69/preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"longest_edge": 1048576,
|
26 |
+
"shortest_edge": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
checkpoint-69/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23c0b258015b388f13cda16100efe0b6d1cfb9ed2aaa61e0a9c866a10c063b3c
|
3 |
+
size 14512
|
checkpoint-69/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818099f2499b673e016c11bacc043b2bdef8c5e4bc337807f1f233839b98ae81
|
3 |
+
size 14512
|
checkpoint-69/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-69/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
|
3 |
+
size 11420538
|
checkpoint-69/tokenizer_config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"model_max_length": 32768,
|
139 |
+
"pad_token": "<|endoftext|>",
|
140 |
+
"padding_side": "right",
|
141 |
+
"processor_class": "Qwen2VLProcessor",
|
142 |
+
"split_special_tokens": false,
|
143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
144 |
+
"unk_token": null
|
145 |
+
}
|
checkpoint-69/trainer_state.json
ADDED
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 69,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"clip_ratio": 0.0,
|
13 |
+
"completion_length": 131.1875,
|
14 |
+
"epoch": 0.014492753623188406,
|
15 |
+
"grad_norm": 0.6139106154441833,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 9.855072463768118e-06,
|
18 |
+
"loss": 0.0,
|
19 |
+
"reward": 2.4375,
|
20 |
+
"reward_std": 0.5868084877729416,
|
21 |
+
"rewards/format_reward_custom": 1.0,
|
22 |
+
"rewards/high_level_action_reward": 0.625,
|
23 |
+
"rewards/low_level_action_reward": 0.8125,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"clip_ratio": 0.0,
|
28 |
+
"completion_length": 127.5625,
|
29 |
+
"epoch": 0.028985507246376812,
|
30 |
+
"grad_norm": 0.5722443461418152,
|
31 |
+
"kl": 0.00024318695068359375,
|
32 |
+
"learning_rate": 9.710144927536233e-06,
|
33 |
+
"loss": 0.0,
|
34 |
+
"reward": 2.5,
|
35 |
+
"reward_std": 0.5239592343568802,
|
36 |
+
"rewards/format_reward_custom": 1.0,
|
37 |
+
"rewards/high_level_action_reward": 0.6875,
|
38 |
+
"rewards/low_level_action_reward": 0.8125,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"clip_ratio": 0.0,
|
43 |
+
"completion_length": 131.4375,
|
44 |
+
"epoch": 0.043478260869565216,
|
45 |
+
"grad_norm": 0.5824880003929138,
|
46 |
+
"kl": 0.00020122528076171875,
|
47 |
+
"learning_rate": 9.565217391304349e-06,
|
48 |
+
"loss": 0.0,
|
49 |
+
"reward": 2.65625,
|
50 |
+
"reward_std": 0.2651650384068489,
|
51 |
+
"rewards/format_reward_custom": 1.0,
|
52 |
+
"rewards/high_level_action_reward": 0.71875,
|
53 |
+
"rewards/low_level_action_reward": 0.9375,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"clip_ratio": 0.0,
|
58 |
+
"completion_length": 118.6875,
|
59 |
+
"epoch": 0.057971014492753624,
|
60 |
+
"grad_norm": 0.36597952246665955,
|
61 |
+
"kl": 0.00018024444580078125,
|
62 |
+
"learning_rate": 9.420289855072464e-06,
|
63 |
+
"loss": 0.0,
|
64 |
+
"reward": 2.9375,
|
65 |
+
"reward_std": 0.1157275140285492,
|
66 |
+
"rewards/format_reward_custom": 1.0,
|
67 |
+
"rewards/high_level_action_reward": 0.9375,
|
68 |
+
"rewards/low_level_action_reward": 1.0,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"clip_ratio": 0.0,
|
73 |
+
"completion_length": 152.5625,
|
74 |
+
"epoch": 0.07246376811594203,
|
75 |
+
"grad_norm": 0.6035860180854797,
|
76 |
+
"kl": 0.0002532005310058594,
|
77 |
+
"learning_rate": 9.275362318840581e-06,
|
78 |
+
"loss": 0.0,
|
79 |
+
"reward": 2.5625,
|
80 |
+
"reward_std": 0.5609941333532333,
|
81 |
+
"rewards/format_reward_custom": 1.0,
|
82 |
+
"rewards/high_level_action_reward": 0.8125,
|
83 |
+
"rewards/low_level_action_reward": 0.75,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"clip_ratio": 0.0,
|
88 |
+
"completion_length": 127.4375,
|
89 |
+
"epoch": 0.08695652173913043,
|
90 |
+
"grad_norm": 0.6012734174728394,
|
91 |
+
"kl": 0.00024127960205078125,
|
92 |
+
"learning_rate": 9.130434782608697e-06,
|
93 |
+
"loss": 0.0,
|
94 |
+
"reward": 2.53125,
|
95 |
+
"reward_std": 0.619232714176178,
|
96 |
+
"rewards/format_reward_custom": 1.0,
|
97 |
+
"rewards/high_level_action_reward": 0.84375,
|
98 |
+
"rewards/low_level_action_reward": 0.6875,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"clip_ratio": 0.0,
|
103 |
+
"completion_length": 144.125,
|
104 |
+
"epoch": 0.10144927536231885,
|
105 |
+
"grad_norm": 0.5445747375488281,
|
106 |
+
"kl": 0.000244140625,
|
107 |
+
"learning_rate": 8.985507246376812e-06,
|
108 |
+
"loss": 0.0,
|
109 |
+
"reward": 2.59375,
|
110 |
+
"reward_std": 0.38138842582702637,
|
111 |
+
"rewards/format_reward_custom": 1.0,
|
112 |
+
"rewards/high_level_action_reward": 0.84375,
|
113 |
+
"rewards/low_level_action_reward": 0.75,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"clip_ratio": 0.0,
|
118 |
+
"completion_length": 129.375,
|
119 |
+
"epoch": 0.11594202898550725,
|
120 |
+
"grad_norm": 0.5511504411697388,
|
121 |
+
"kl": 0.0002574920654296875,
|
122 |
+
"learning_rate": 8.840579710144929e-06,
|
123 |
+
"loss": 0.0,
|
124 |
+
"reward": 2.5625,
|
125 |
+
"reward_std": 0.4802234023809433,
|
126 |
+
"rewards/format_reward_custom": 1.0,
|
127 |
+
"rewards/high_level_action_reward": 0.75,
|
128 |
+
"rewards/low_level_action_reward": 0.8125,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"clip_ratio": 0.0,
|
133 |
+
"completion_length": 146.3125,
|
134 |
+
"epoch": 0.13043478260869565,
|
135 |
+
"grad_norm": 0.39530378580093384,
|
136 |
+
"kl": 0.000354766845703125,
|
137 |
+
"learning_rate": 8.695652173913044e-06,
|
138 |
+
"loss": 0.0,
|
139 |
+
"reward": 2.65625,
|
140 |
+
"reward_std": 0.35197147727012634,
|
141 |
+
"rewards/format_reward_custom": 1.0,
|
142 |
+
"rewards/high_level_action_reward": 0.84375,
|
143 |
+
"rewards/low_level_action_reward": 0.8125,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"clip_ratio": 0.0,
|
148 |
+
"completion_length": 140.375,
|
149 |
+
"epoch": 0.14492753623188406,
|
150 |
+
"grad_norm": 0.6552218794822693,
|
151 |
+
"kl": 0.0005092620849609375,
|
152 |
+
"learning_rate": 8.55072463768116e-06,
|
153 |
+
"loss": 0.0,
|
154 |
+
"reward": 2.4375,
|
155 |
+
"reward_std": 0.5546489059925079,
|
156 |
+
"rewards/format_reward_custom": 1.0,
|
157 |
+
"rewards/high_level_action_reward": 0.75,
|
158 |
+
"rewards/low_level_action_reward": 0.6875,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"clip_ratio": 0.0,
|
163 |
+
"completion_length": 133.8125,
|
164 |
+
"epoch": 0.15942028985507245,
|
165 |
+
"grad_norm": 0.5951517224311829,
|
166 |
+
"kl": 0.00035858154296875,
|
167 |
+
"learning_rate": 8.405797101449275e-06,
|
168 |
+
"loss": 0.0,
|
169 |
+
"reward": 2.78125,
|
170 |
+
"reward_std": 0.3061639815568924,
|
171 |
+
"rewards/format_reward_custom": 1.0,
|
172 |
+
"rewards/high_level_action_reward": 0.84375,
|
173 |
+
"rewards/low_level_action_reward": 0.9375,
|
174 |
+
"step": 11
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"clip_ratio": 0.0,
|
178 |
+
"completion_length": 135.3125,
|
179 |
+
"epoch": 0.17391304347826086,
|
180 |
+
"grad_norm": 0.5633934140205383,
|
181 |
+
"kl": 0.0006542205810546875,
|
182 |
+
"learning_rate": 8.260869565217392e-06,
|
183 |
+
"loss": 0.0,
|
184 |
+
"reward": 2.625,
|
185 |
+
"reward_std": 0.2925042062997818,
|
186 |
+
"rewards/format_reward_custom": 1.0,
|
187 |
+
"rewards/high_level_action_reward": 0.8125,
|
188 |
+
"rewards/low_level_action_reward": 0.8125,
|
189 |
+
"step": 12
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"clip_ratio": 0.0,
|
193 |
+
"completion_length": 123.5625,
|
194 |
+
"epoch": 0.18840579710144928,
|
195 |
+
"grad_norm": 0.6226204037666321,
|
196 |
+
"kl": 0.0006656646728515625,
|
197 |
+
"learning_rate": 8.115942028985508e-06,
|
198 |
+
"loss": 0.0,
|
199 |
+
"reward": 2.59375,
|
200 |
+
"reward_std": 0.35564958304166794,
|
201 |
+
"rewards/format_reward_custom": 1.0,
|
202 |
+
"rewards/high_level_action_reward": 0.78125,
|
203 |
+
"rewards/low_level_action_reward": 0.8125,
|
204 |
+
"step": 13
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"clip_ratio": 0.0,
|
208 |
+
"completion_length": 105.625,
|
209 |
+
"epoch": 0.2028985507246377,
|
210 |
+
"grad_norm": 0.6195806264877319,
|
211 |
+
"kl": 0.000820159912109375,
|
212 |
+
"learning_rate": 7.971014492753623e-06,
|
213 |
+
"loss": 0.0,
|
214 |
+
"reward": 2.0,
|
215 |
+
"reward_std": 0.26726123690605164,
|
216 |
+
"rewards/format_reward_custom": 1.0,
|
217 |
+
"rewards/high_level_action_reward": 0.5,
|
218 |
+
"rewards/low_level_action_reward": 0.5,
|
219 |
+
"step": 14
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"clip_ratio": 0.0,
|
223 |
+
"completion_length": 125.1875,
|
224 |
+
"epoch": 0.21739130434782608,
|
225 |
+
"grad_norm": 0.6649656891822815,
|
226 |
+
"kl": 0.000728607177734375,
|
227 |
+
"learning_rate": 7.82608695652174e-06,
|
228 |
+
"loss": 0.0,
|
229 |
+
"reward": 2.625,
|
230 |
+
"reward_std": 0.5720614045858383,
|
231 |
+
"rewards/format_reward_custom": 1.0,
|
232 |
+
"rewards/high_level_action_reward": 0.8125,
|
233 |
+
"rewards/low_level_action_reward": 0.8125,
|
234 |
+
"step": 15
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"clip_ratio": 0.0,
|
238 |
+
"completion_length": 133.9375,
|
239 |
+
"epoch": 0.2318840579710145,
|
240 |
+
"grad_norm": 0.5864853262901306,
|
241 |
+
"kl": 0.000736236572265625,
|
242 |
+
"learning_rate": 7.681159420289856e-06,
|
243 |
+
"loss": 0.0,
|
244 |
+
"reward": 2.4375,
|
245 |
+
"reward_std": 0.5585024058818817,
|
246 |
+
"rewards/format_reward_custom": 1.0,
|
247 |
+
"rewards/high_level_action_reward": 0.8125,
|
248 |
+
"rewards/low_level_action_reward": 0.625,
|
249 |
+
"step": 16
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"clip_ratio": 0.0,
|
253 |
+
"completion_length": 134.5,
|
254 |
+
"epoch": 0.2463768115942029,
|
255 |
+
"grad_norm": 0.6138740181922913,
|
256 |
+
"kl": 0.0010128021240234375,
|
257 |
+
"learning_rate": 7.536231884057972e-06,
|
258 |
+
"loss": 0.0,
|
259 |
+
"reward": 2.5,
|
260 |
+
"reward_std": 0.5500157475471497,
|
261 |
+
"rewards/format_reward_custom": 1.0,
|
262 |
+
"rewards/high_level_action_reward": 0.6875,
|
263 |
+
"rewards/low_level_action_reward": 0.8125,
|
264 |
+
"step": 17
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"clip_ratio": 0.0,
|
268 |
+
"completion_length": 121.875,
|
269 |
+
"epoch": 0.2608695652173913,
|
270 |
+
"grad_norm": 0.5959410667419434,
|
271 |
+
"kl": 0.001262664794921875,
|
272 |
+
"learning_rate": 7.391304347826087e-06,
|
273 |
+
"loss": 0.0001,
|
274 |
+
"reward": 2.8125,
|
275 |
+
"reward_std": 0.31539323925971985,
|
276 |
+
"rewards/format_reward_custom": 1.0,
|
277 |
+
"rewards/high_level_action_reward": 0.875,
|
278 |
+
"rewards/low_level_action_reward": 0.9375,
|
279 |
+
"step": 18
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"clip_ratio": 0.0,
|
283 |
+
"completion_length": 141.375,
|
284 |
+
"epoch": 0.2753623188405797,
|
285 |
+
"grad_norm": 0.5705474615097046,
|
286 |
+
"kl": 0.001049041748046875,
|
287 |
+
"learning_rate": 7.246376811594203e-06,
|
288 |
+
"loss": 0.0,
|
289 |
+
"reward": 2.28125,
|
290 |
+
"reward_std": 0.6677263081073761,
|
291 |
+
"rewards/format_reward_custom": 1.0,
|
292 |
+
"rewards/high_level_action_reward": 0.84375,
|
293 |
+
"rewards/low_level_action_reward": 0.4375,
|
294 |
+
"step": 19
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"clip_ratio": 0.0,
|
298 |
+
"completion_length": 135.5625,
|
299 |
+
"epoch": 0.2898550724637681,
|
300 |
+
"grad_norm": 0.43123292922973633,
|
301 |
+
"kl": 0.001407623291015625,
|
302 |
+
"learning_rate": 7.10144927536232e-06,
|
303 |
+
"loss": 0.0001,
|
304 |
+
"reward": 2.90625,
|
305 |
+
"reward_std": 0.18600594997406006,
|
306 |
+
"rewards/format_reward_custom": 1.0,
|
307 |
+
"rewards/high_level_action_reward": 0.96875,
|
308 |
+
"rewards/low_level_action_reward": 0.9375,
|
309 |
+
"step": 20
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"clip_ratio": 0.0,
|
313 |
+
"completion_length": 122.0,
|
314 |
+
"epoch": 0.30434782608695654,
|
315 |
+
"grad_norm": 0.6939437985420227,
|
316 |
+
"kl": 0.001312255859375,
|
317 |
+
"learning_rate": 6.956521739130435e-06,
|
318 |
+
"loss": 0.0001,
|
319 |
+
"reward": 2.625,
|
320 |
+
"reward_std": 0.39837799966335297,
|
321 |
+
"rewards/format_reward_custom": 1.0,
|
322 |
+
"rewards/high_level_action_reward": 0.8125,
|
323 |
+
"rewards/low_level_action_reward": 0.8125,
|
324 |
+
"step": 21
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"clip_ratio": 0.0,
|
328 |
+
"completion_length": 118.3125,
|
329 |
+
"epoch": 0.3188405797101449,
|
330 |
+
"grad_norm": 0.6187354326248169,
|
331 |
+
"kl": 0.00099945068359375,
|
332 |
+
"learning_rate": 6.811594202898551e-06,
|
333 |
+
"loss": 0.0,
|
334 |
+
"reward": 2.90625,
|
335 |
+
"reward_std": 0.2651650384068489,
|
336 |
+
"rewards/format_reward_custom": 1.0,
|
337 |
+
"rewards/high_level_action_reward": 0.96875,
|
338 |
+
"rewards/low_level_action_reward": 0.9375,
|
339 |
+
"step": 22
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"clip_ratio": 0.0,
|
343 |
+
"completion_length": 137.125,
|
344 |
+
"epoch": 0.3333333333333333,
|
345 |
+
"grad_norm": 0.619391143321991,
|
346 |
+
"kl": 0.00128173828125,
|
347 |
+
"learning_rate": 6.666666666666667e-06,
|
348 |
+
"loss": 0.0001,
|
349 |
+
"reward": 2.53125,
|
350 |
+
"reward_std": 0.3966485261917114,
|
351 |
+
"rewards/format_reward_custom": 1.0,
|
352 |
+
"rewards/high_level_action_reward": 0.65625,
|
353 |
+
"rewards/low_level_action_reward": 0.875,
|
354 |
+
"step": 23
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"clip_ratio": 0.0,
|
358 |
+
"completion_length": 113.375,
|
359 |
+
"epoch": 0.34782608695652173,
|
360 |
+
"grad_norm": 0.6596890687942505,
|
361 |
+
"kl": 0.001399993896484375,
|
362 |
+
"learning_rate": 6.521739130434783e-06,
|
363 |
+
"loss": 0.0001,
|
364 |
+
"reward": 2.75,
|
365 |
+
"reward_std": 0.32261285185813904,
|
366 |
+
"rewards/format_reward_custom": 1.0,
|
367 |
+
"rewards/high_level_action_reward": 0.75,
|
368 |
+
"rewards/low_level_action_reward": 1.0,
|
369 |
+
"step": 24
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"clip_ratio": 0.0,
|
373 |
+
"completion_length": 132.6875,
|
374 |
+
"epoch": 0.36231884057971014,
|
375 |
+
"grad_norm": 0.6133448481559753,
|
376 |
+
"kl": 0.0009860992431640625,
|
377 |
+
"learning_rate": 6.376811594202898e-06,
|
378 |
+
"loss": 0.0,
|
379 |
+
"reward": 2.8125,
|
380 |
+
"reward_std": 0.45117098093032837,
|
381 |
+
"rewards/format_reward_custom": 1.0,
|
382 |
+
"rewards/high_level_action_reward": 0.9375,
|
383 |
+
"rewards/low_level_action_reward": 0.875,
|
384 |
+
"step": 25
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"clip_ratio": 0.0,
|
388 |
+
"completion_length": 149.1875,
|
389 |
+
"epoch": 0.37681159420289856,
|
390 |
+
"grad_norm": 0.6592795848846436,
|
391 |
+
"kl": 0.00177764892578125,
|
392 |
+
"learning_rate": 6.2318840579710145e-06,
|
393 |
+
"loss": 0.0001,
|
394 |
+
"reward": 2.59375,
|
395 |
+
"reward_std": 0.6028470396995544,
|
396 |
+
"rewards/format_reward_custom": 0.9375,
|
397 |
+
"rewards/high_level_action_reward": 0.84375,
|
398 |
+
"rewards/low_level_action_reward": 0.8125,
|
399 |
+
"step": 26
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"clip_ratio": 0.0,
|
403 |
+
"completion_length": 129.6875,
|
404 |
+
"epoch": 0.391304347826087,
|
405 |
+
"grad_norm": 0.5780444145202637,
|
406 |
+
"kl": 0.00179290771484375,
|
407 |
+
"learning_rate": 6.086956521739132e-06,
|
408 |
+
"loss": 0.0001,
|
409 |
+
"reward": 2.75,
|
410 |
+
"reward_std": 0.35841864347457886,
|
411 |
+
"rewards/format_reward_custom": 1.0,
|
412 |
+
"rewards/high_level_action_reward": 0.875,
|
413 |
+
"rewards/low_level_action_reward": 0.875,
|
414 |
+
"step": 27
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"clip_ratio": 0.0,
|
418 |
+
"completion_length": 122.4375,
|
419 |
+
"epoch": 0.4057971014492754,
|
420 |
+
"grad_norm": 0.004627756774425507,
|
421 |
+
"kl": 0.00113677978515625,
|
422 |
+
"learning_rate": 5.942028985507247e-06,
|
423 |
+
"loss": 0.0,
|
424 |
+
"reward": 3.0,
|
425 |
+
"reward_std": 0.0,
|
426 |
+
"rewards/format_reward_custom": 1.0,
|
427 |
+
"rewards/high_level_action_reward": 1.0,
|
428 |
+
"rewards/low_level_action_reward": 1.0,
|
429 |
+
"step": 28
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"clip_ratio": 0.0,
|
433 |
+
"completion_length": 141.0625,
|
434 |
+
"epoch": 0.42028985507246375,
|
435 |
+
"grad_norm": 0.5492585301399231,
|
436 |
+
"kl": 0.001590728759765625,
|
437 |
+
"learning_rate": 5.797101449275363e-06,
|
438 |
+
"loss": 0.0001,
|
439 |
+
"reward": 2.78125,
|
440 |
+
"reward_std": 0.2630179077386856,
|
441 |
+
"rewards/format_reward_custom": 1.0,
|
442 |
+
"rewards/high_level_action_reward": 0.78125,
|
443 |
+
"rewards/low_level_action_reward": 1.0,
|
444 |
+
"step": 29
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"clip_ratio": 0.0,
|
448 |
+
"completion_length": 141.0,
|
449 |
+
"epoch": 0.43478260869565216,
|
450 |
+
"grad_norm": 0.5583959221839905,
|
451 |
+
"kl": 0.002197265625,
|
452 |
+
"learning_rate": 5.652173913043479e-06,
|
453 |
+
"loss": 0.0001,
|
454 |
+
"reward": 2.34375,
|
455 |
+
"reward_std": 0.38138842582702637,
|
456 |
+
"rewards/format_reward_custom": 1.0,
|
457 |
+
"rewards/high_level_action_reward": 0.65625,
|
458 |
+
"rewards/low_level_action_reward": 0.6875,
|
459 |
+
"step": 30
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"clip_ratio": 0.0,
|
463 |
+
"completion_length": 132.8125,
|
464 |
+
"epoch": 0.4492753623188406,
|
465 |
+
"grad_norm": 0.5492476224899292,
|
466 |
+
"kl": 0.002262115478515625,
|
467 |
+
"learning_rate": 5.507246376811595e-06,
|
468 |
+
"loss": 0.0001,
|
469 |
+
"reward": 2.4375,
|
470 |
+
"reward_std": 0.5260358154773712,
|
471 |
+
"rewards/format_reward_custom": 1.0,
|
472 |
+
"rewards/high_level_action_reward": 0.875,
|
473 |
+
"rewards/low_level_action_reward": 0.5625,
|
474 |
+
"step": 31
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"clip_ratio": 0.0,
|
478 |
+
"completion_length": 138.875,
|
479 |
+
"epoch": 0.463768115942029,
|
480 |
+
"grad_norm": 0.5487068891525269,
|
481 |
+
"kl": 0.00237274169921875,
|
482 |
+
"learning_rate": 5.362318840579711e-06,
|
483 |
+
"loss": 0.0001,
|
484 |
+
"reward": 2.59375,
|
485 |
+
"reward_std": 0.34475886821746826,
|
486 |
+
"rewards/format_reward_custom": 1.0,
|
487 |
+
"rewards/high_level_action_reward": 0.78125,
|
488 |
+
"rewards/low_level_action_reward": 0.8125,
|
489 |
+
"step": 32
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"clip_ratio": 0.0,
|
493 |
+
"completion_length": 142.875,
|
494 |
+
"epoch": 0.4782608695652174,
|
495 |
+
"grad_norm": 0.5532354712486267,
|
496 |
+
"kl": 0.001415252685546875,
|
497 |
+
"learning_rate": 5.2173913043478265e-06,
|
498 |
+
"loss": 0.0001,
|
499 |
+
"reward": 2.65625,
|
500 |
+
"reward_std": 0.35098859667778015,
|
501 |
+
"rewards/format_reward_custom": 1.0,
|
502 |
+
"rewards/high_level_action_reward": 0.71875,
|
503 |
+
"rewards/low_level_action_reward": 0.9375,
|
504 |
+
"step": 33
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"clip_ratio": 0.0,
|
508 |
+
"completion_length": 124.75,
|
509 |
+
"epoch": 0.4927536231884058,
|
510 |
+
"grad_norm": 0.5815756916999817,
|
511 |
+
"kl": 0.00170135498046875,
|
512 |
+
"learning_rate": 5.072463768115943e-06,
|
513 |
+
"loss": 0.0001,
|
514 |
+
"reward": 2.75,
|
515 |
+
"reward_std": 0.39837799966335297,
|
516 |
+
"rewards/format_reward_custom": 1.0,
|
517 |
+
"rewards/high_level_action_reward": 0.9375,
|
518 |
+
"rewards/low_level_action_reward": 0.8125,
|
519 |
+
"step": 34
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"clip_ratio": 0.0,
|
523 |
+
"completion_length": 114.4375,
|
524 |
+
"epoch": 0.5072463768115942,
|
525 |
+
"grad_norm": 0.6308125257492065,
|
526 |
+
"kl": 0.0013580322265625,
|
527 |
+
"learning_rate": 4.927536231884059e-06,
|
528 |
+
"loss": 0.0001,
|
529 |
+
"reward": 2.625,
|
530 |
+
"reward_std": 0.3535533770918846,
|
531 |
+
"rewards/format_reward_custom": 1.0,
|
532 |
+
"rewards/high_level_action_reward": 0.875,
|
533 |
+
"rewards/low_level_action_reward": 0.75,
|
534 |
+
"step": 35
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"clip_ratio": 0.0,
|
538 |
+
"completion_length": 148.625,
|
539 |
+
"epoch": 0.5217391304347826,
|
540 |
+
"grad_norm": 0.5474228858947754,
|
541 |
+
"kl": 0.00164031982421875,
|
542 |
+
"learning_rate": 4.782608695652174e-06,
|
543 |
+
"loss": 0.0001,
|
544 |
+
"reward": 2.625,
|
545 |
+
"reward_std": 0.4355512708425522,
|
546 |
+
"rewards/format_reward_custom": 1.0,
|
547 |
+
"rewards/high_level_action_reward": 0.875,
|
548 |
+
"rewards/low_level_action_reward": 0.75,
|
549 |
+
"step": 36
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"clip_ratio": 0.0,
|
553 |
+
"completion_length": 124.75,
|
554 |
+
"epoch": 0.5362318840579711,
|
555 |
+
"grad_norm": 0.46679696440696716,
|
556 |
+
"kl": 0.002105712890625,
|
557 |
+
"learning_rate": 4.637681159420291e-06,
|
558 |
+
"loss": 0.0001,
|
559 |
+
"reward": 2.78125,
|
560 |
+
"reward_std": 0.33905068039894104,
|
561 |
+
"rewards/format_reward_custom": 1.0,
|
562 |
+
"rewards/high_level_action_reward": 0.90625,
|
563 |
+
"rewards/low_level_action_reward": 0.875,
|
564 |
+
"step": 37
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"clip_ratio": 0.0,
|
568 |
+
"completion_length": 131.125,
|
569 |
+
"epoch": 0.5507246376811594,
|
570 |
+
"grad_norm": 0.6113550662994385,
|
571 |
+
"kl": 0.002593994140625,
|
572 |
+
"learning_rate": 4.492753623188406e-06,
|
573 |
+
"loss": 0.0001,
|
574 |
+
"reward": 2.78125,
|
575 |
+
"reward_std": 0.3749881833791733,
|
576 |
+
"rewards/format_reward_custom": 1.0,
|
577 |
+
"rewards/high_level_action_reward": 0.90625,
|
578 |
+
"rewards/low_level_action_reward": 0.875,
|
579 |
+
"step": 38
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"clip_ratio": 0.0,
|
583 |
+
"completion_length": 132.25,
|
584 |
+
"epoch": 0.5652173913043478,
|
585 |
+
"grad_norm": 0.6611613035202026,
|
586 |
+
"kl": 0.00252532958984375,
|
587 |
+
"learning_rate": 4.347826086956522e-06,
|
588 |
+
"loss": 0.0001,
|
589 |
+
"reward": 2.625,
|
590 |
+
"reward_std": 0.5487885922193527,
|
591 |
+
"rewards/format_reward_custom": 1.0,
|
592 |
+
"rewards/high_level_action_reward": 0.75,
|
593 |
+
"rewards/low_level_action_reward": 0.875,
|
594 |
+
"step": 39
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"clip_ratio": 0.0,
|
598 |
+
"completion_length": 115.5,
|
599 |
+
"epoch": 0.5797101449275363,
|
600 |
+
"grad_norm": 0.6072784662246704,
|
601 |
+
"kl": 0.002056121826171875,
|
602 |
+
"learning_rate": 4.202898550724638e-06,
|
603 |
+
"loss": 0.0001,
|
604 |
+
"reward": 2.84375,
|
605 |
+
"reward_std": 0.3808925449848175,
|
606 |
+
"rewards/format_reward_custom": 1.0,
|
607 |
+
"rewards/high_level_action_reward": 0.90625,
|
608 |
+
"rewards/low_level_action_reward": 0.9375,
|
609 |
+
"step": 40
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"clip_ratio": 0.0,
|
613 |
+
"completion_length": 129.875,
|
614 |
+
"epoch": 0.5942028985507246,
|
615 |
+
"grad_norm": 0.5880132913589478,
|
616 |
+
"kl": 0.0030670166015625,
|
617 |
+
"learning_rate": 4.057971014492754e-06,
|
618 |
+
"loss": 0.0001,
|
619 |
+
"reward": 2.65625,
|
620 |
+
"reward_std": 0.3966485261917114,
|
621 |
+
"rewards/format_reward_custom": 1.0,
|
622 |
+
"rewards/high_level_action_reward": 0.78125,
|
623 |
+
"rewards/low_level_action_reward": 0.875,
|
624 |
+
"step": 41
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"clip_ratio": 0.0,
|
628 |
+
"completion_length": 120.75,
|
629 |
+
"epoch": 0.6086956521739131,
|
630 |
+
"grad_norm": 0.6412323117256165,
|
631 |
+
"kl": 0.0033416748046875,
|
632 |
+
"learning_rate": 3.91304347826087e-06,
|
633 |
+
"loss": 0.0001,
|
634 |
+
"reward": 2.21875,
|
635 |
+
"reward_std": 0.3818188011646271,
|
636 |
+
"rewards/format_reward_custom": 1.0,
|
637 |
+
"rewards/high_level_action_reward": 0.59375,
|
638 |
+
"rewards/low_level_action_reward": 0.625,
|
639 |
+
"step": 42
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"clip_ratio": 0.0,
|
643 |
+
"completion_length": 131.3125,
|
644 |
+
"epoch": 0.6231884057971014,
|
645 |
+
"grad_norm": 0.6180394887924194,
|
646 |
+
"kl": 0.00208282470703125,
|
647 |
+
"learning_rate": 3.768115942028986e-06,
|
648 |
+
"loss": 0.0001,
|
649 |
+
"reward": 2.65625,
|
650 |
+
"reward_std": 0.5133327841758728,
|
651 |
+
"rewards/format_reward_custom": 1.0,
|
652 |
+
"rewards/high_level_action_reward": 0.84375,
|
653 |
+
"rewards/low_level_action_reward": 0.8125,
|
654 |
+
"step": 43
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"clip_ratio": 0.0,
|
658 |
+
"completion_length": 128.5625,
|
659 |
+
"epoch": 0.6376811594202898,
|
660 |
+
"grad_norm": 0.6940774917602539,
|
661 |
+
"kl": 0.002685546875,
|
662 |
+
"learning_rate": 3.6231884057971017e-06,
|
663 |
+
"loss": 0.0001,
|
664 |
+
"reward": 2.625,
|
665 |
+
"reward_std": 0.44099316000938416,
|
666 |
+
"rewards/format_reward_custom": 0.9375,
|
667 |
+
"rewards/high_level_action_reward": 0.875,
|
668 |
+
"rewards/low_level_action_reward": 0.8125,
|
669 |
+
"step": 44
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"clip_ratio": 0.0,
|
673 |
+
"completion_length": 126.6875,
|
674 |
+
"epoch": 0.6521739130434783,
|
675 |
+
"grad_norm": 0.6032717227935791,
|
676 |
+
"kl": 0.00244140625,
|
677 |
+
"learning_rate": 3.4782608695652175e-06,
|
678 |
+
"loss": 0.0001,
|
679 |
+
"reward": 2.65625,
|
680 |
+
"reward_std": 0.5762138962745667,
|
681 |
+
"rewards/format_reward_custom": 1.0,
|
682 |
+
"rewards/high_level_action_reward": 0.84375,
|
683 |
+
"rewards/low_level_action_reward": 0.8125,
|
684 |
+
"step": 45
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"clip_ratio": 0.0,
|
688 |
+
"completion_length": 137.25,
|
689 |
+
"epoch": 0.6666666666666666,
|
690 |
+
"grad_norm": 0.3984113335609436,
|
691 |
+
"kl": 0.001659393310546875,
|
692 |
+
"learning_rate": 3.3333333333333333e-06,
|
693 |
+
"loss": 0.0001,
|
694 |
+
"reward": 2.84375,
|
695 |
+
"reward_std": 0.2651650309562683,
|
696 |
+
"rewards/format_reward_custom": 1.0,
|
697 |
+
"rewards/high_level_action_reward": 0.90625,
|
698 |
+
"rewards/low_level_action_reward": 0.9375,
|
699 |
+
"step": 46
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"clip_ratio": 0.0,
|
703 |
+
"completion_length": 134.3125,
|
704 |
+
"epoch": 0.6811594202898551,
|
705 |
+
"grad_norm": 0.37174344062805176,
|
706 |
+
"kl": 0.003200531005859375,
|
707 |
+
"learning_rate": 3.188405797101449e-06,
|
708 |
+
"loss": 0.0001,
|
709 |
+
"reward": 2.875,
|
710 |
+
"reward_std": 0.13363061845302582,
|
711 |
+
"rewards/format_reward_custom": 1.0,
|
712 |
+
"rewards/high_level_action_reward": 0.875,
|
713 |
+
"rewards/low_level_action_reward": 1.0,
|
714 |
+
"step": 47
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"clip_ratio": 0.0,
|
718 |
+
"completion_length": 113.625,
|
719 |
+
"epoch": 0.6956521739130435,
|
720 |
+
"grad_norm": 0.6417880654335022,
|
721 |
+
"kl": 0.0034027099609375,
|
722 |
+
"learning_rate": 3.043478260869566e-06,
|
723 |
+
"loss": 0.0001,
|
724 |
+
"reward": 2.125,
|
725 |
+
"reward_std": 0.5175491571426392,
|
726 |
+
"rewards/format_reward_custom": 1.0,
|
727 |
+
"rewards/high_level_action_reward": 0.5,
|
728 |
+
"rewards/low_level_action_reward": 0.625,
|
729 |
+
"step": 48
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"clip_ratio": 0.0,
|
733 |
+
"completion_length": 120.875,
|
734 |
+
"epoch": 0.7101449275362319,
|
735 |
+
"grad_norm": 0.3155536353588104,
|
736 |
+
"kl": 0.003082275390625,
|
737 |
+
"learning_rate": 2.8985507246376816e-06,
|
738 |
+
"loss": 0.0001,
|
739 |
+
"reward": 2.84375,
|
740 |
+
"reward_std": 0.18600594997406006,
|
741 |
+
"rewards/format_reward_custom": 1.0,
|
742 |
+
"rewards/high_level_action_reward": 0.90625,
|
743 |
+
"rewards/low_level_action_reward": 0.9375,
|
744 |
+
"step": 49
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"clip_ratio": 0.0,
|
748 |
+
"completion_length": 133.3125,
|
749 |
+
"epoch": 0.7246376811594203,
|
750 |
+
"grad_norm": 0.6605053544044495,
|
751 |
+
"kl": 0.00164031982421875,
|
752 |
+
"learning_rate": 2.7536231884057974e-06,
|
753 |
+
"loss": 0.0001,
|
754 |
+
"reward": 2.65625,
|
755 |
+
"reward_std": 0.36348532140254974,
|
756 |
+
"rewards/format_reward_custom": 1.0,
|
757 |
+
"rewards/high_level_action_reward": 0.78125,
|
758 |
+
"rewards/low_level_action_reward": 0.875,
|
759 |
+
"step": 50
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"clip_ratio": 0.0,
|
763 |
+
"completion_length": 141.9375,
|
764 |
+
"epoch": 0.7391304347826086,
|
765 |
+
"grad_norm": 0.5570524334907532,
|
766 |
+
"kl": 0.002655029296875,
|
767 |
+
"learning_rate": 2.6086956521739132e-06,
|
768 |
+
"loss": 0.0001,
|
769 |
+
"reward": 2.59375,
|
770 |
+
"reward_std": 0.7191916108131409,
|
771 |
+
"rewards/format_reward_custom": 1.0,
|
772 |
+
"rewards/high_level_action_reward": 0.78125,
|
773 |
+
"rewards/low_level_action_reward": 0.8125,
|
774 |
+
"step": 51
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"clip_ratio": 0.0,
|
778 |
+
"completion_length": 141.1875,
|
779 |
+
"epoch": 0.7536231884057971,
|
780 |
+
"grad_norm": 0.4170561730861664,
|
781 |
+
"kl": 0.001430511474609375,
|
782 |
+
"learning_rate": 2.4637681159420295e-06,
|
783 |
+
"loss": 0.0001,
|
784 |
+
"reward": 2.90625,
|
785 |
+
"reward_std": 0.1293872892856598,
|
786 |
+
"rewards/format_reward_custom": 1.0,
|
787 |
+
"rewards/high_level_action_reward": 0.90625,
|
788 |
+
"rewards/low_level_action_reward": 1.0,
|
789 |
+
"step": 52
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"clip_ratio": 0.0,
|
793 |
+
"completion_length": 121.5625,
|
794 |
+
"epoch": 0.7681159420289855,
|
795 |
+
"grad_norm": 0.6030449867248535,
|
796 |
+
"kl": 0.0033111572265625,
|
797 |
+
"learning_rate": 2.3188405797101453e-06,
|
798 |
+
"loss": 0.0001,
|
799 |
+
"reward": 2.212499976158142,
|
800 |
+
"reward_std": 0.46406444907188416,
|
801 |
+
"rewards/format_reward_custom": 1.0,
|
802 |
+
"rewards/high_level_action_reward": 0.5250000059604645,
|
803 |
+
"rewards/low_level_action_reward": 0.6875,
|
804 |
+
"step": 53
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"clip_ratio": 0.0,
|
808 |
+
"completion_length": 130.0625,
|
809 |
+
"epoch": 0.782608695652174,
|
810 |
+
"grad_norm": 0.40535715222358704,
|
811 |
+
"kl": 0.001888275146484375,
|
812 |
+
"learning_rate": 2.173913043478261e-06,
|
813 |
+
"loss": 0.0001,
|
814 |
+
"reward": 2.90625,
|
815 |
+
"reward_std": 0.1293872892856598,
|
816 |
+
"rewards/format_reward_custom": 1.0,
|
817 |
+
"rewards/high_level_action_reward": 0.90625,
|
818 |
+
"rewards/low_level_action_reward": 1.0,
|
819 |
+
"step": 54
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"clip_ratio": 0.0,
|
823 |
+
"completion_length": 133.25,
|
824 |
+
"epoch": 0.7971014492753623,
|
825 |
+
"grad_norm": 0.5601004958152771,
|
826 |
+
"kl": 0.00250244140625,
|
827 |
+
"learning_rate": 2.028985507246377e-06,
|
828 |
+
"loss": 0.0001,
|
829 |
+
"reward": 2.5,
|
830 |
+
"reward_std": 0.5945880711078644,
|
831 |
+
"rewards/format_reward_custom": 1.0,
|
832 |
+
"rewards/high_level_action_reward": 0.8125,
|
833 |
+
"rewards/low_level_action_reward": 0.6875,
|
834 |
+
"step": 55
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"clip_ratio": 0.0,
|
838 |
+
"completion_length": 123.3125,
|
839 |
+
"epoch": 0.8115942028985508,
|
840 |
+
"grad_norm": 0.6125327348709106,
|
841 |
+
"kl": 0.00266265869140625,
|
842 |
+
"learning_rate": 1.884057971014493e-06,
|
843 |
+
"loss": 0.0001,
|
844 |
+
"reward": 2.625,
|
845 |
+
"reward_std": 0.3380180299282074,
|
846 |
+
"rewards/format_reward_custom": 1.0,
|
847 |
+
"rewards/high_level_action_reward": 0.75,
|
848 |
+
"rewards/low_level_action_reward": 0.875,
|
849 |
+
"step": 56
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"clip_ratio": 0.0,
|
853 |
+
"completion_length": 139.875,
|
854 |
+
"epoch": 0.8260869565217391,
|
855 |
+
"grad_norm": 0.525627613067627,
|
856 |
+
"kl": 0.002033233642578125,
|
857 |
+
"learning_rate": 1.7391304347826088e-06,
|
858 |
+
"loss": 0.0001,
|
859 |
+
"reward": 2.65625,
|
860 |
+
"reward_std": 0.5649385899305344,
|
861 |
+
"rewards/format_reward_custom": 0.9375,
|
862 |
+
"rewards/high_level_action_reward": 0.84375,
|
863 |
+
"rewards/low_level_action_reward": 0.875,
|
864 |
+
"step": 57
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"clip_ratio": 0.0,
|
868 |
+
"completion_length": 121.0,
|
869 |
+
"epoch": 0.8405797101449275,
|
870 |
+
"grad_norm": 0.6244301795959473,
|
871 |
+
"kl": 0.0027923583984375,
|
872 |
+
"learning_rate": 1.5942028985507246e-06,
|
873 |
+
"loss": 0.0001,
|
874 |
+
"reward": 2.875,
|
875 |
+
"reward_std": 0.27439429610967636,
|
876 |
+
"rewards/format_reward_custom": 1.0,
|
877 |
+
"rewards/high_level_action_reward": 0.9375,
|
878 |
+
"rewards/low_level_action_reward": 0.9375,
|
879 |
+
"step": 58
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"clip_ratio": 0.0,
|
883 |
+
"completion_length": 134.6875,
|
884 |
+
"epoch": 0.855072463768116,
|
885 |
+
"grad_norm": 0.6077686548233032,
|
886 |
+
"kl": 0.0023651123046875,
|
887 |
+
"learning_rate": 1.4492753623188408e-06,
|
888 |
+
"loss": 0.0001,
|
889 |
+
"reward": 2.5,
|
890 |
+
"reward_std": 0.42632102966308594,
|
891 |
+
"rewards/format_reward_custom": 1.0,
|
892 |
+
"rewards/high_level_action_reward": 0.8125,
|
893 |
+
"rewards/low_level_action_reward": 0.6875,
|
894 |
+
"step": 59
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"clip_ratio": 0.0,
|
898 |
+
"completion_length": 129.125,
|
899 |
+
"epoch": 0.8695652173913043,
|
900 |
+
"grad_norm": 0.549598217010498,
|
901 |
+
"kl": 0.001483917236328125,
|
902 |
+
"learning_rate": 1.3043478260869566e-06,
|
903 |
+
"loss": 0.0001,
|
904 |
+
"reward": 2.6875,
|
905 |
+
"reward_std": 0.4150373041629791,
|
906 |
+
"rewards/format_reward_custom": 1.0,
|
907 |
+
"rewards/high_level_action_reward": 0.875,
|
908 |
+
"rewards/low_level_action_reward": 0.8125,
|
909 |
+
"step": 60
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"clip_ratio": 0.0,
|
913 |
+
"completion_length": 132.0625,
|
914 |
+
"epoch": 0.8840579710144928,
|
915 |
+
"grad_norm": 0.3656002879142761,
|
916 |
+
"kl": 0.00152587890625,
|
917 |
+
"learning_rate": 1.1594202898550726e-06,
|
918 |
+
"loss": 0.0001,
|
919 |
+
"reward": 2.837499976158142,
|
920 |
+
"reward_std": 0.18077217042446136,
|
921 |
+
"rewards/format_reward_custom": 1.0,
|
922 |
+
"rewards/high_level_action_reward": 0.9000000059604645,
|
923 |
+
"rewards/low_level_action_reward": 0.9375,
|
924 |
+
"step": 61
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"clip_ratio": 0.0,
|
928 |
+
"completion_length": 150.25,
|
929 |
+
"epoch": 0.8985507246376812,
|
930 |
+
"grad_norm": 0.5994426012039185,
|
931 |
+
"kl": 0.0025482177734375,
|
932 |
+
"learning_rate": 1.0144927536231885e-06,
|
933 |
+
"loss": 0.0001,
|
934 |
+
"reward": 2.71875,
|
935 |
+
"reward_std": 0.36348532140254974,
|
936 |
+
"rewards/format_reward_custom": 1.0,
|
937 |
+
"rewards/high_level_action_reward": 0.84375,
|
938 |
+
"rewards/low_level_action_reward": 0.875,
|
939 |
+
"step": 62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"clip_ratio": 0.0,
|
943 |
+
"completion_length": 121.3125,
|
944 |
+
"epoch": 0.9130434782608695,
|
945 |
+
"grad_norm": 0.6515089273452759,
|
946 |
+
"kl": 0.0019683837890625,
|
947 |
+
"learning_rate": 8.695652173913044e-07,
|
948 |
+
"loss": 0.0001,
|
949 |
+
"reward": 2.21875,
|
950 |
+
"reward_std": 0.4966200590133667,
|
951 |
+
"rewards/format_reward_custom": 1.0,
|
952 |
+
"rewards/high_level_action_reward": 0.65625,
|
953 |
+
"rewards/low_level_action_reward": 0.5625,
|
954 |
+
"step": 63
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"clip_ratio": 0.0,
|
958 |
+
"completion_length": 124.625,
|
959 |
+
"epoch": 0.927536231884058,
|
960 |
+
"grad_norm": 0.6351967453956604,
|
961 |
+
"kl": 0.002838134765625,
|
962 |
+
"learning_rate": 7.246376811594204e-07,
|
963 |
+
"loss": 0.0001,
|
964 |
+
"reward": 2.78125,
|
965 |
+
"reward_std": 0.3808925449848175,
|
966 |
+
"rewards/format_reward_custom": 1.0,
|
967 |
+
"rewards/high_level_action_reward": 0.84375,
|
968 |
+
"rewards/low_level_action_reward": 0.9375,
|
969 |
+
"step": 64
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"clip_ratio": 0.0,
|
973 |
+
"completion_length": 121.6875,
|
974 |
+
"epoch": 0.9420289855072463,
|
975 |
+
"grad_norm": 0.6020182967185974,
|
976 |
+
"kl": 0.001895904541015625,
|
977 |
+
"learning_rate": 5.797101449275363e-07,
|
978 |
+
"loss": 0.0001,
|
979 |
+
"reward": 2.8125,
|
980 |
+
"reward_std": 0.3535533770918846,
|
981 |
+
"rewards/format_reward_custom": 0.9375,
|
982 |
+
"rewards/high_level_action_reward": 0.875,
|
983 |
+
"rewards/low_level_action_reward": 1.0,
|
984 |
+
"step": 65
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"clip_ratio": 0.0,
|
988 |
+
"completion_length": 125.0,
|
989 |
+
"epoch": 0.9565217391304348,
|
990 |
+
"grad_norm": 0.6860438585281372,
|
991 |
+
"kl": 0.00278472900390625,
|
992 |
+
"learning_rate": 4.347826086956522e-07,
|
993 |
+
"loss": 0.0001,
|
994 |
+
"reward": 2.65625,
|
995 |
+
"reward_std": 0.2651650384068489,
|
996 |
+
"rewards/format_reward_custom": 1.0,
|
997 |
+
"rewards/high_level_action_reward": 0.71875,
|
998 |
+
"rewards/low_level_action_reward": 0.9375,
|
999 |
+
"step": 66
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"clip_ratio": 0.0,
|
1003 |
+
"completion_length": 123.875,
|
1004 |
+
"epoch": 0.9710144927536232,
|
1005 |
+
"grad_norm": 0.587708592414856,
|
1006 |
+
"kl": 0.003173828125,
|
1007 |
+
"learning_rate": 2.8985507246376816e-07,
|
1008 |
+
"loss": 0.0001,
|
1009 |
+
"reward": 2.625,
|
1010 |
+
"reward_std": 0.2925042062997818,
|
1011 |
+
"rewards/format_reward_custom": 1.0,
|
1012 |
+
"rewards/high_level_action_reward": 0.8125,
|
1013 |
+
"rewards/low_level_action_reward": 0.8125,
|
1014 |
+
"step": 67
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"clip_ratio": 0.0,
|
1018 |
+
"completion_length": 131.125,
|
1019 |
+
"epoch": 0.9855072463768116,
|
1020 |
+
"grad_norm": 0.5342994928359985,
|
1021 |
+
"kl": 0.002532958984375,
|
1022 |
+
"learning_rate": 1.4492753623188408e-07,
|
1023 |
+
"loss": 0.0001,
|
1024 |
+
"reward": 2.71875,
|
1025 |
+
"reward_std": 0.4419417232275009,
|
1026 |
+
"rewards/format_reward_custom": 1.0,
|
1027 |
+
"rewards/high_level_action_reward": 0.84375,
|
1028 |
+
"rewards/low_level_action_reward": 0.875,
|
1029 |
+
"step": 68
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"clip_ratio": 0.0,
|
1033 |
+
"completion_length": 122.875,
|
1034 |
+
"epoch": 1.0,
|
1035 |
+
"grad_norm": 0.43572136759757996,
|
1036 |
+
"kl": 0.00244140625,
|
1037 |
+
"learning_rate": 0.0,
|
1038 |
+
"loss": 0.0001,
|
1039 |
+
"reward": 2.875,
|
1040 |
+
"reward_std": 0.13363061845302582,
|
1041 |
+
"rewards/format_reward_custom": 1.0,
|
1042 |
+
"rewards/high_level_action_reward": 0.875,
|
1043 |
+
"rewards/low_level_action_reward": 1.0,
|
1044 |
+
"step": 69
|
1045 |
+
}
|
1046 |
+
],
|
1047 |
+
"logging_steps": 1.0,
|
1048 |
+
"max_steps": 69,
|
1049 |
+
"num_input_tokens_seen": 0,
|
1050 |
+
"num_train_epochs": 1,
|
1051 |
+
"save_steps": 2,
|
1052 |
+
"stateful_callbacks": {
|
1053 |
+
"TrainerControl": {
|
1054 |
+
"args": {
|
1055 |
+
"should_epoch_stop": false,
|
1056 |
+
"should_evaluate": false,
|
1057 |
+
"should_log": false,
|
1058 |
+
"should_save": true,
|
1059 |
+
"should_training_stop": true
|
1060 |
+
},
|
1061 |
+
"attributes": {}
|
1062 |
+
}
|
1063 |
+
},
|
1064 |
+
"total_flos": 0.0,
|
1065 |
+
"train_batch_size": 4,
|
1066 |
+
"trial_name": null,
|
1067 |
+
"trial_params": null
|
1068 |
+
}
|
checkpoint-69/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4d6271d133105d2cac453bf32849252af60188137b1c5b8cd038085a5c5bad
|
3 |
+
size 8056
|
checkpoint-69/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-69/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"longest_edge": 1048576,
|
26 |
+
"shortest_edge": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
|
3 |
+
size 11420538
|
tokenizer_config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"model_max_length": 32768,
|
139 |
+
"pad_token": "<|endoftext|>",
|
140 |
+
"padding_side": "right",
|
141 |
+
"processor_class": "Qwen2VLProcessor",
|
142 |
+
"split_special_tokens": false,
|
143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
144 |
+
"unk_token": null
|
145 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4d6271d133105d2cac453bf32849252af60188137b1c5b8cd038085a5c5bad
|
3 |
+
size 8056
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|