update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -43,16 +43,22 @@ The following hyperparameters were used during training:
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_ratio: 0.1
|
46 |
-
- training_steps:
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
|
|
53 |
-
| 1.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6163
|
20 |
+
- Accuracy: 0.7898
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 3650
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 1.1996 | 0.1 | 365 | 2.4460 | 0.5567 |
|
53 |
+
| 1.4174 | 1.1 | 730 | 0.6252 | 0.8041 |
|
54 |
+
| 0.0092 | 2.1 | 1095 | 1.2255 | 0.7629 |
|
55 |
+
| 0.765 | 3.1 | 1460 | 0.9238 | 0.7732 |
|
56 |
+
| 0.1714 | 4.1 | 1825 | 1.0449 | 0.7938 |
|
57 |
+
| 0.09 | 5.1 | 2190 | 1.4747 | 0.7629 |
|
58 |
+
| 0.0006 | 6.1 | 2555 | 1.3157 | 0.7835 |
|
59 |
+
| 0.0004 | 7.1 | 2920 | 1.6183 | 0.7216 |
|
60 |
+
| 0.0012 | 8.1 | 3285 | 1.5373 | 0.7732 |
|
61 |
+
| 0.0005 | 9.1 | 3650 | 1.6775 | 0.7629 |
|
62 |
|
63 |
|
64 |
### Framework versions
|