krishnamishra8848 commited on
Commit
9ccb5a7
·
verified ·
1 Parent(s): 13ba2ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,3 +1,58 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ```python
6
+ # Example Code: Try on google colab
7
+
8
+ # Install required libraries
9
+ !pip install ultralytics --quiet
10
+ !pip install huggingface_hub --quiet
11
+ import cv2
12
+ import matplotlib.pyplot as plt
13
+ from ultralytics import YOLO
14
+ from huggingface_hub import hf_hub_download
15
+ from google.colab import files
16
+ import os
17
+
18
+ # Download the YOLO model from Hugging Face
19
+ model_path = hf_hub_download(repo_id="krishnamishra8848/Road_Detection", filename="best.pt")
20
+
21
+ # Load the YOLO model
22
+ model = YOLO(model_path)
23
+
24
+ # Upload a photo
25
+ print("Please upload an image:")
26
+ uploaded = files.upload()
27
+
28
+ for filename in uploaded.keys():
29
+ # Read the uploaded image
30
+ image = cv2.imread(filename)
31
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
32
+
33
+ # Perform inference
34
+ results = model(image)
35
+
36
+ # Draw bounding boxes and class names
37
+ for result in results[0].boxes:
38
+ box = result.xyxy[0].cpu().numpy() # Bounding box (x_min, y_min, x_max, y_max)
39
+ cls = int(result.cls[0].cpu().numpy()) # Class ID
40
+ conf = result.conf[0].cpu().numpy() # Confidence score
41
+ label = f"{model.names[cls]}: {conf:.2f}" # Label with class name and confidence
42
+
43
+ # Draw the bounding box
44
+ cv2.rectangle(image_rgb, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
45
+
46
+ # Draw the class name and confidence score
47
+ cv2.putText(image_rgb, label, (int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
48
+
49
+ # Display the image with bounding boxes
50
+ plt.figure(figsize=(10, 10))
51
+ plt.imshow(image_rgb)
52
+ plt.axis('off')
53
+ plt.show()
54
+
55
+ # Save the processed image
56
+ output_filename = "output_" + filename
57
+ cv2.imwrite(output_filename, cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR))
58
+ print(f"Processed image saved as {output_filename}")