--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlmr_synset_classifier_marked results: [] --- # xlmr_synset_classifier_marked This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5065 - Accuracy: 0.8542 - F1: 0.8462 - Precision: 0.8503 - Recall: 0.8542 - F1 Macro: 0.6998 - Precision Macro: 0.6940 - Recall Macro: 0.7209 - F1 Micro: 0.8542 - Precision Micro: 0.8542 - Recall Micro: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| | 3.4502 | 0.6221 | 100 | 1.8070 | 0.6245 | 0.5355 | 0.5022 | 0.6245 | 0.2357 | 0.2456 | 0.2565 | 0.6245 | 0.6245 | 0.6245 | | 1.1977 | 1.2442 | 200 | 0.7296 | 0.8116 | 0.7934 | 0.8034 | 0.8116 | 0.5365 | 0.5496 | 0.5643 | 0.8116 | 0.8116 | 0.8116 | | 0.724 | 1.8663 | 300 | 0.6379 | 0.8282 | 0.8150 | 0.8301 | 0.8282 | 0.5981 | 0.5903 | 0.6309 | 0.8282 | 0.8282 | 0.8282 | | 0.5655 | 2.4883 | 400 | 0.5609 | 0.8398 | 0.8267 | 0.8326 | 0.8398 | 0.6235 | 0.6094 | 0.6519 | 0.8398 | 0.8398 | 0.8398 | | 0.5095 | 3.1104 | 500 | 0.5166 | 0.8488 | 0.8389 | 0.8470 | 0.8488 | 0.6594 | 0.6492 | 0.6862 | 0.8488 | 0.8488 | 0.8488 | | 0.4206 | 3.7325 | 600 | 0.4964 | 0.8479 | 0.8396 | 0.8412 | 0.8479 | 0.6778 | 0.6770 | 0.6923 | 0.8479 | 0.8479 | 0.8479 | | 0.386 | 4.3546 | 700 | 0.5091 | 0.8502 | 0.8418 | 0.8468 | 0.8502 | 0.6949 | 0.6930 | 0.7146 | 0.8502 | 0.8502 | 0.8502 | | 0.3463 | 4.9767 | 800 | 0.5065 | 0.8542 | 0.8462 | 0.8503 | 0.8542 | 0.6998 | 0.6940 | 0.7209 | 0.8542 | 0.8542 | 0.8542 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3