Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,252 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
|
|
5 |
pipeline_tag: text-generation
|
6 |
tags:
|
7 |
-
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
+
library_name: transformers
|
5 |
pipeline_tag: text-generation
|
6 |
tags:
|
7 |
+
- decoder-only
|
8 |
+
- nlp
|
9 |
+
- autoregressive
|
10 |
+
- rope
|
11 |
+
- gqa
|
12 |
+
- rmsnorm
|
13 |
+
- swiglu
|
14 |
+
- from-scratch
|
15 |
+
datasets:
|
16 |
+
- roneneldan/TinyStories
|
17 |
+
license: apache-2.0
|
18 |
+
model-index:
|
19 |
+
- name: GatorGPT2
|
20 |
+
results: []
|
21 |
+
---
|
22 |
+
|
23 |
+
# π GatorGPT2
|
24 |
+
|
25 |
+
**GatorGPT2** is a small, decoder-only Transformer trained from scratch on a subset of **TinyStories** for next-token prediction.
|
26 |
+
It uses **RoPE** (rotary positional embeddings), **GQA** (grouped-query attention), **RMSNorm**, and a **SwiGLU MLP**.
|
27 |
+
Tokenizer is **tiktoken** with **p50k_base** vocabulary.
|
28 |
+
|
29 |
+
> **Repo**: `kunjcr2/GatorGPT2`
|
30 |
+
> **Intended use**: research, experimentation, educational demos for training/serving custom LMs
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## π§ Architecture
|
35 |
+
|
36 |
+
- **Type**: Decoder-only, causal LM
|
37 |
+
- **Layers**: `num_hidden_layers = 10`
|
38 |
+
- **Hidden size**: `hidden_size = 448`
|
39 |
+
- **Heads**: `num_attention_heads = 8` (GQA with 2 KV heads per query group)
|
40 |
+
- **FFN**: SwiGLU, `d_ff β 2Γ hidden_size`
|
41 |
+
- **Norm**: RMSNorm (pre-norm blocks)
|
42 |
+
- **Positional**: RoPE
|
43 |
+
- **Vocab**: `vocab_size = 50,257` (tiktoken p50k_base)
|
44 |
+
- **Context length**: `max_position_embeddings = 1024`
|
45 |
+
- **Weight tying**: output head tied with token embeddings
|
46 |
+
- **Files**:
|
47 |
+
- `pytorch_model.bin` (or `model.safetensors`)
|
48 |
+
- `config.json` (`model_type: "gator-transformer"`, `auto_map` provided)
|
49 |
+
- `modeling_gator.py`, `configuration_gator.py`, `__init__.py`
|
50 |
+
- `tokenizer_manifest.json` β `{ "library": "tiktoken", "encoding": "p50k_base" }`
|
51 |
+
|
52 |
+
> Custom code is loaded via `trust_remote_code=True`.
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## π¦ Install
|
57 |
+
|
58 |
+
```bash
|
59 |
+
pip install torch transformers tiktoken
|
60 |
+
````
|
61 |
+
|
62 |
+
---
|
63 |
+
|
64 |
+
## π Quickstart (Transformers + tiktoken)
|
65 |
+
|
66 |
+
```python
|
67 |
+
import torch
|
68 |
+
from transformers import AutoModelForCausalLM
|
69 |
+
import tiktoken
|
70 |
+
|
71 |
+
MODEL_ID = "kunjcr2/GatorGPT2"
|
72 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
73 |
+
|
74 |
+
# Load model (uses custom modeling code)
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
MODEL_ID,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float32,
|
79 |
+
).to(DEVICE).eval()
|
80 |
+
|
81 |
+
# Tokenizer (p50k_base via tiktoken)
|
82 |
+
tok = tiktoken.get_encoding("p50k_base")
|
83 |
+
|
84 |
+
def generate_greedy(prompt: str, max_new_tokens: int = 64) -> str:
|
85 |
+
ids = tok.encode(prompt)
|
86 |
+
x = torch.tensor([ids], device=DEVICE)
|
87 |
+
for _ in range(max_new_tokens):
|
88 |
+
with torch.no_grad():
|
89 |
+
out = model(x)
|
90 |
+
logits = out["logits"] if isinstance(out, dict) else out.logits
|
91 |
+
next_id = int(torch.argmax(logits[0, -1]))
|
92 |
+
x = torch.cat([x, torch.tensor([[next_id]], device=DEVICE)], dim=1)
|
93 |
+
return tok.decode(x[0].tolist()).replace("<|endoftext|>", "").strip()
|
94 |
+
|
95 |
+
print(generate_greedy("Little girl was"))
|
96 |
+
```
|
97 |
+
|
98 |
+
### Temperature-only sampling (no top-k/p)
|
99 |
+
|
100 |
+
```python
|
101 |
+
def generate_temp(prompt, max_new_tokens=64, temperature=0.9):
|
102 |
+
ids = tok.encode(prompt)
|
103 |
+
x = torch.tensor([ids], device=DEVICE)
|
104 |
+
for _ in range(max_new_tokens):
|
105 |
+
with torch.no_grad():
|
106 |
+
logits = model(x).logits[0, -1] / max(temperature, 1e-6)
|
107 |
+
probs = torch.softmax(logits, dim=-1)
|
108 |
+
next_id = torch.multinomial(probs, 1).item()
|
109 |
+
x = torch.cat([x, torch.tensor([[next_id]], device=DEVICE)], dim=1)
|
110 |
+
return tok.decode(x[0].tolist()).replace("<|endoftext|>", "").strip()
|
111 |
+
```
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
## π Serving with vLLM (Optional)
|
116 |
+
|
117 |
+
```bash
|
118 |
+
python -m vllm.entrypoints.openai.api_server \
|
119 |
+
--model kunjcr2/GatorGPT2 \
|
120 |
+
--tokenizer kunjcr2/GatorGPT2 \
|
121 |
+
--trust-remote-code \
|
122 |
+
--dtype float32 \
|
123 |
+
--max-model-len 1024 \
|
124 |
+
--host 0.0.0.0 --port 8000
|
125 |
+
```
|
126 |
+
|
127 |
+
Call it:
|
128 |
+
|
129 |
+
```bash
|
130 |
+
curl http://localhost:8000/v1/completions \
|
131 |
+
-H "Content-Type: application/json" \
|
132 |
+
-d '{"model":"kunjcr2/GatorGPT2","prompt":"Little girl was","max_tokens":64,"temperature":0.9}'
|
133 |
+
```
|
134 |
+
|
135 |
+
---
|
136 |
+
|
137 |
+
## π§ͺ Training Summary
|
138 |
+
|
139 |
+
* **Data**: `roneneldan/TinyStories` (train split; subset of \~1.5M stories)
|
140 |
+
* **Objective**: causal LM (next-token prediction), cross-entropy
|
141 |
+
* **Optimizer**: AdamW (`lr=3e-4`, `weight_decay=0.01`, `eps=1e-8`)
|
142 |
+
* **Precision**: bf16 autocast on CUDA during forward for speed
|
143 |
+
* **Batching**: sliding windows via a `FastDataset` (window size e.g. 512, stride 256)
|
144 |
+
* **Eval**: periodic validation over fixed batches; train loss downsampled to eval steps for plotting
|
145 |
+
* **Hardware**: intended for A100-class GPUs; also runs on CPU for debug (slow)
|
146 |
+
|
147 |
+
> This is a *from-scratch* toy/educational model; quality depends heavily on steps, data cleaned, and schedule. Expect simple, short English generations.
|
148 |
+
|
149 |
+
---
|
150 |
+
|
151 |
+
## β
Intended Use
|
152 |
+
|
153 |
+
* Research on small decoder-only Transformers
|
154 |
+
* Educational demos (training, saving, model hub, vLLM serving)
|
155 |
+
* Baseline for experimenting with:
|
156 |
+
|
157 |
+
* LoRA/QLoRA, quantization, distillation
|
158 |
+
* Attention variants (Flash-Attention, GQA configs)
|
159 |
+
* Data curation and scaling laws
|
160 |
+
|
161 |
+
**Not** intended for production or safety-critical use.
|
162 |
+
|
163 |
+
---
|
164 |
+
|
165 |
+
## β οΈ Limitations & Risks
|
166 |
+
|
167 |
+
* Trained on childrenβs story data β limited world knowledge & reasoning
|
168 |
+
* May output incoherent, repetitive, or undesirable text
|
169 |
+
* No instruction-tuning or RLHF
|
170 |
+
* Tokenizer is `tiktoken p50k_base` (not a standard HF tokenizer), so examples use `tiktoken` directly
|
171 |
+
|
172 |
+
---
|
173 |
+
|
174 |
+
## π Repo Structure
|
175 |
+
|
176 |
+
```
|
177 |
+
.
|
178 |
+
βββ config.json
|
179 |
+
βββ pytorch_model.bin # or model.safetensors
|
180 |
+
βββ modeling_gator.py # custom architecture (RoPE, GQA, RMSNorm, SwiGLU)
|
181 |
+
βββ configuration_gator.py
|
182 |
+
βββ __init__.py
|
183 |
+
βββ tokenizer_manifest.json # { "library": "tiktoken", "encoding": "p50k_base" }
|
184 |
+
```
|
185 |
+
|
186 |
+
`config.json` includes:
|
187 |
+
|
188 |
+
```json
|
189 |
+
{
|
190 |
+
"model_type": "gator-transformer",
|
191 |
+
"architectures": ["GatorModel"],
|
192 |
+
"auto_map": {
|
193 |
+
"AutoConfig": "configuration_gator.GatorConfig",
|
194 |
+
"AutoModelForCausalLM": "modeling_gator.GatorModel"
|
195 |
+
}
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
---
|
200 |
+
|
201 |
+
## π Evaluation
|
202 |
+
|
203 |
+
No formal benchmarks reported. You can compute loss/perplexity on your own validation subset:
|
204 |
+
|
205 |
+
```python
|
206 |
+
import math, torch
|
207 |
+
from torch.utils.data import DataLoader, TensorDataset
|
208 |
+
|
209 |
+
# ...build a DataLoader of (input_ids, target_ids) pairs...
|
210 |
+
def eval_loss(model, loader, device="cuda"):
|
211 |
+
model.eval(); total, n = 0.0, 0
|
212 |
+
with torch.no_grad():
|
213 |
+
for x, y in loader:
|
214 |
+
x, y = x.to(device), y.to(device)
|
215 |
+
logits = model(x).logits
|
216 |
+
loss = torch.nn.functional.cross_entropy(
|
217 |
+
logits.view(-1, logits.size(-1)), y.view(-1)
|
218 |
+
)
|
219 |
+
total += loss.item(); n += 1
|
220 |
+
return total / max(n,1)
|
221 |
+
|
222 |
+
val_loss = eval_loss(model, your_val_loader)
|
223 |
+
print("val loss:", val_loss, " ppl:", math.exp(val_loss))
|
224 |
+
```
|
225 |
+
|
226 |
+
---
|
227 |
+
|
228 |
+
## π License
|
229 |
+
|
230 |
+
**apache-2.0**
|
231 |
+
|
232 |
+
---
|
233 |
+
|
234 |
+
## π Acknowledgements
|
235 |
+
|
236 |
+
* **TinyStories** dataset by Ronen Eldan et al. (`roneneldan/TinyStories`)
|
237 |
+
* Community tooling: **PyTorch**, **π€ Transformers**, **tiktoken**, **vLLM**
|
238 |
+
|
239 |
+
---
|
240 |
+
|
241 |
+
## βοΈ Citation
|
242 |
+
|
243 |
+
If you use this model, please cite this repository:
|
244 |
+
|
245 |
+
```bibtex
|
246 |
+
@software{GatorGPT2_2025,
|
247 |
+
author = {Kunj},
|
248 |
+
title = {GatorGPT2: a small decoder-only Transformer with RoPE+GQA},
|
249 |
+
year = {2025},
|
250 |
+
url = {https://huggingface.co/kunjcr2/GatorGPT2}
|
251 |
+
}
|
252 |
+
```
|